Abstract

Controls of integrated gasoline engine and aftertreatment systems are critical for fuel efficiency improvement and emission regulation. This paper aims to develop novel model-based three-way catalytic converter (TWC) controls to reduce the fuel consumption and tailpipe emissions for a gasoline engine. A model-based dither control and a nonlinear model predictive control (MPC)-based control are presented, respectively. The proposed TWC dither control utilizes a systematically designed dither cycle configuration (including dithering amplitude, offset, and frequency) based on a control-oriented model, with the capability to adapt the dither cycle configuration to various engine operating conditions. The MPC control can optimize engine air–fuel ratio (AFR) to maintain the oxygen storage of TWC at a desired level and thus meet the tailpipe NOx, CO, and HC emission requirements. The efficacies of both model-based TWC controls are validated in simulation with MPC control improving CO emission conversion efficiencies by 8.42% and 4.85% in simplified US06 and urban dynamometer driving schedule (UDDS) driving cycles, when compared to a baseline dithering-based AFR control. Meanwhile, NOx emission conversion efficiency is maintained above the required limit of 95%, while the fuel efficiency remains at the same level as the baseline control methodology.

References

1.
Postma
,
M.
, and
Nagamune
,
R.
,
2011
, “
Air-Fuel Ratio Control of Spark Ignition Engines Using a Switching LPV Controller
,”
IEEE Trans. Control Syst. Technol.
,
20
(
5
), pp.
1175
1187
.10.1109/TCST.2011.2163937
2.
Koltsakis
,
G. C.
, and
Stamatelos
,
A. M.
,
1999
, “
Modeling Dynamic Phenomena in 3-Way Catalytic Converters
,”
Chem. Eng. Sci.
,
54
(
20
), pp.
4567
4578
.10.1016/S0009-2509(99)00130-X
3.
U.S. Energy Information Administration
,
2016
, “
Monthly Energy Review
,” U.S. Department of Energy, Washington, DC, Report No. DOE/EIA-0035.
4.
U.S. Environmental Protection Agency
,
2016
, “
Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014
,” U.S. Environmental Protection Agency, Washington, DC, Report No.
EPA 430-R-16-002
. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2014
5.
Manzie
,
C.
,
Palaniswami
,
M.
, and
Ralph
,
D.
,
2002
, “
Model Predictive Control of a Fuel Injection System With a Radial Basis Function Network Observer
,”
ASME J. Dyn. Syst., Meas., Control
,
124
(
4
), pp.
648
658
.10.1115/1.1515328
6.
Ebrahimi
,
B.
,
Tafreshi
,
R.
, and
Masudi
,
H.
,
2012
, “
A Parameter-Varying Filtered PID Strategy for Air–Fuel Ratio Control of Spark Ignition Engines
,”
Control Eng. Pract.
,
20
(
8
), pp.
805
815
.10.1016/j.conengprac.2012.04.001
7.
Choi
,
S. B.
, and
Hedrick
,
J. K.
,
1998
, “
An Observer-Based Controller Design Method for Improving Air/Fuel Characteristics of Spark Ignition Engines
,”
IEEE Trans. Control Syst. Technol.
,
6
(
3
), pp.
325
334
.10.1109/87.668034
8.
Pieper
,
J. K.
, and
Mehrotra
,
R.
,
1999
, “
Air/Fuel Ratio Control Using Sliding Mode Methods
,”
Proceedings of the American Control Conference
,
IEEE
, Vol.
2
, San Diego, CA, June 2–4, pp.
1027
1031
.10.1109/ACC.1999.783196
9.
Souder
,
J. S.
, and
Hedrick
,
J. K.
,
2004
, “
Adaptive Sliding Mode Control of Air–Fuel Ratio in Internal Combustion Engines
,”
Int. J. Robust Nonlinear Control
,
14
(
6
), pp.
525
541
.10.1002/rnc.901
10.
Kahveci
,
N. E.
, and
Jankovic
,
M. J.
,
2010
, “
Adaptive Controller With Delay Compensation for Air-Fuel Ratio Regulation in SI Engines
,”
Proceedings of the American Control Conference
,
IEEE
, Baltimore, MD, June 30–July 2, pp.
2236
2241
.10.1109/ACC.2010.5530525
11.
Zhai
,
Y.
, and
Yu
,
D.
,
2007
, “
A Neural Network Model Based MPC of Engine AFR With Single-Dimensional Optimization
,”
International Symposium on Neural Networks
, Nanjing, China, June 3–7, Springer, Berlin, pp.
339
348
.10.1007/978-3-540-72383-7_40
12.
Zope
,
R. A.
,
Mohammadpour
,
J.
, and
Grigoriadis
,
K. M.
,
2009
, “
Air-Fuel Ratio Control of Spark Ignition Engines With TWC Using LPV Techniques
,”
ASME
Paper No. DSCC2009-2704.10.1115/DSCC2009-2704
13.
Ghaffari
,
A.
,
Shamekhi
,
A. H.
, and
Saki
,
A.
,
2008
, “
Adaptive Fuzzy Control for Air-Fuel Ratio of Automobile Spark Ignition Engine
,”
World Acad. Sci., Eng. Technol.
,
48
, pp.
284
292
. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.9526&rep=rep1&type=pdf
14.
Franceschi, E. M., Muske, K. R., and Jones, J. C. P., 2007, “An Adaptive Delay-Compensated PID Air Fuel Ratio Controller,”
SAE Trans.
, 116, pp. 888–894.http://www.jstor.org/stable/44699323
15.
Shi
,
X.
,
Seiser
,
R.
, and
Chen
,
J.
,
2015
, “
Fuel-Dithering Optimization of Efficiency of TWC on Natural Gas IC Engine
,”
SAE Int. J. Engines
,
8
(
3
), pp.
1246
1252
.10.4271/2015-01-1043
16.
Trimboli
,
S.
,
Di Cairano
,
S.
, and
Bemporad
,
A.
,
2012
,
Time Delay Systems: Methods, Applications and New Trends
,
Springer
, Berlin, pp.
319
330
.
17.
Wang
,
S. W.
,
Yu
,
D. L.
, and
Gomm
,
J. B.
,
2006
, “
Adaptive Neural Network Model Based Predictive Control for Air–Fuel Ratio of SI Engines
,”
Eng. Appl. Artif. Intell.
,
19
(
2
), pp.
189
200
.10.1016/j.engappai.2005.08.005
18.
Hu
,
Y.
,
Fan
,
Y.
, and
Liang
,
Y.
,
2014
, “
Data-Driven Model Predictive Control of Air-Fuel Ratio for PFISI Engine
,”
11th World Congress on Intelligent Control and Automation
,
IEEE
, Shenyang, China, June 29–July 4, pp.
4577
4582
. 10.1109/WCICA.2014.7053485
19.
Brandt
,
E. P.
,
Wang
,
Y.
, and
Grizzle
,
J. W.
,
2000
, “
Dynamic Modeling of a Three-Way Catalyst for SI Engine Exhaust Emission Control
,”
IEEE Trans. Control Syst. Technol.
,
8
(
5
), pp.
767
776
.10.1109/87.865850
20.
Desantes
,
J.
,
Guardiola
,
C.
,
Pla
,
B.
, and
Real
,
M.
,
2018
, “
Oxygen Catalyst Depletion Strategy Based on TWC Control-Oriented Modelling
,”
IFAC-PapersOnLine
,
51
(
31
), pp.
355
361
.10.1016/j.ifacol.2018.10.073
21.
Soumelidis
,
M.
,
Stobart
,
R.
, and
Jackson
,
R.
,
2007
, “
A Chemically Informed, Control-Oriented Model of a Three-Way Catalytic Converter
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
9
), pp.
1169
1182
.10.1243/09544070JAUTO259
22.
Sabatini
,
S.
,
Gelmini
,
S.
, and
Hoffman
,
M. A.
,
2017
, “
Design and Experimental Validation of a Physics-Based Oxygen Storage—Thermal Model for Three Way Catalyst Including Aging
,”
Control Eng. Pract.
,
68
, pp.
89
101
.10.1016/j.conengprac.2017.07.007
23.
Johnson
,
T. V.
, and
Joshi
,
A.
,
2018
, “
Chapter 1: Review of deNOx Technology for Mobile Applications
,”
NOx Trap Catalysts and Technologies: Fundamentals and Industrial Applications
, The Royal Society of Chemistry, London, UK, pp.
1
35
.
24.
Kaneko
,
Y.
,
Kobayashi
,
H.
, and
Komagome
,
R.
,
1978
, “
Effect of Air-Fuel Ratio Modulation on Conversion Efficiency of Three-Way Catalysts
,”
SAE Trans.
,
87
, pp.
2225
2233
. https://www.jstor.org/stable/44632547
25.
Eriksson
,
L.
, and
Nielsen
,
L.
,
2014
,
Modeling and Control of Engines and Drivelines
,
Wiley
, Chichester, UK.
26.
Heywood
,
J. B.
,
1988
,
Combustion Engine Fundamentals
, 1st ed., McGraw-Hill Education, New York.
27.
Meyer
,
J.
,
Yurkovich
,
S.
, and
Midlam-Mohler
,
S.
,
2012
, “
Air-to-Fuel Ratio Switching Frequency Control for Gasoline Engines
,”
IEEE Trans. Control Syst. Technol.
,
21
(
3
), pp.
636
648
.10.1109/TCST.2012.2188631
28.
Auckenthaler
,
T. S.
,
Onder
,
C. H.
, and
Geering
,
H. P.
,
2004
, “
Online Estimation of the Oxygen Storage Level of a Three-Way Catalyst
,”
SAE
Paper No. 2004-01-0525.10.4271/2004-01-0525
29.
Muske
,
K. R.
, and
Jones
,
J. C. P.
,
2004
, “
Estimating the Oxygen Storage Level of a Three-Way Automotive Catalyst
,”
Proceedings of the American Control Conference
,
IEEE
, Vol.
5
, Boston, MA, June 30–July 2, pp.
4060
4065
.10.23919/ACC.2004.1383944
30.
Henson
,
M. A.
,
1998
, “
Nonlinear Model Predictive Control: Current Status and Future Directions
,”
Comput. Chem. Eng.
,
23
(
2
), pp.
187
202
.10.1016/S0098-1354(98)00260-9
31.
Chen
,
P.
, and
Wang
,
J.
,
2015
, “
Nonlinear Model Predictive Control of Integrated Diesel Engine and Selective Catalytic Reduction System for Simultaneous Fuel Economy Improvement and Emissions Reduction
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
8
), p.
081008
.10.1115/1.4030252
32.
Dettu
,
F.
, and
Onori
,
S.
,
2021
, “
On Rigorous Model-Order Reduction of the Thermal and Oxygen Storage Dynamics of Three Way Catalytic Converters
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
3
), p.
031002
.10.1115/1.4048359
33.
Lin
,
Q.
,
Chen
,
P.
, and
Prikhodko
,
V. Y.
,
2019
, “
Experimental Study and Model Predictive Control of a Lean-Burn Gasoline Engine Coupled With a Passive Selective Catalytic Reduction System
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
9
), p.
091008
.10.1115/1.4043269
34.
Chen
,
P.
, and
Wang
,
J.
,
2015
, “
Coordinated Active Thermal Management and Selective Catalytic Reduction Control for Simultaneous Fuel Economy Improvement and Emissions Reduction During Low-Temperature Operations
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
12
), p.
121001
.10.1115/1.4031133
35.
Fiengo
,
G.
,
Cook
,
J. A.
, and
Grizzle
,
J. W.
,
2002
, “
Fore-Aft Oxygen Storage Control
,”
Proceedings of the American Control Conference
,
IEEE
, Vol.
2
, Anchorage, AK, May 8–10, pp.
1401
1406
.10.1109/ACC.2002.1023217
36.
Ngo
,
C.
,
Koenig
,
D.
,
Sename
,
O.
, and
Béchart
,
H.
,
2013
, “
A Reduced Model of Three Ways Catalyst Converter and Stored Oxygen Rate Estimation Using Switched Observer
,” European Control Conference (
ECC
), Zurich, Switzerland, July 17–19, pp.
3718
3723
.10.23919/ECC.2013.6669754
37.
Fiengo
,
G.
,
Grizzle
,
J. W.
,
Cook
,
J. A.
, and
Karnik
,
A. Y.
,
2005
, “
Dual-UEGO Active Catalyst Control for Emissions Reduction: Design and Experimental Validation
,”
IEEE Trans. Control Syst. Technol.
,
13
(
5
), pp.
722
736
.10.1109/TCST.2005.854326
38.
Baran
,
M.
,
2015
, “
Stationary Engine Emission Controls & A/F Controller/Remote Control
,” Johnson Matthey Stationary Emissions Control, Harrisburg, PA, accessed Sept. 23, 2015, https://cdn.ymaws.com/www.icac.com/resource/resmgr/PA_DEP/Johnson_Matthey_Stationary_E.pdf
39.
Chambon
,
P.
,
Huff
,
S.
, and
Norman
,
K.
,
2011
, “
European Lean Gasoline Direct Injection Vehicle Benchmark
,”
SAE
Paper No. 2011-01-1218.10.4271/2011-01-1218
40.
Lin
,
Q.
,
Chen
,
P.
, and
Prikhodko
,
V. Y.
,
2017
, “
Model Predictive Control of a Lean-Burn Gasoline Engine Coupled With a Passive Selective Catalytic Reduction System
,”
ASME
Paper No. DSCC2017-5348.10.1115/DSCC2017-5348
41.
Bemporad
,
A.
, and
Morari
,
M.
,
1999
,
Robustness in Identification and Control
,
Springer
, Turin, Italy, pp.
207
226
.
You do not currently have access to this content.