Abstract

This paper presents the theoretical upper bound of the harvested power, which is amplified by a generalized electrical damping switching controller in a linear time invariant system. The upper bound is found by maximizing a single-variable function with respect to the switching time. The upper bound shows the possibility of raising the power–frequency curve over the optimal passive curves reported in literature. The optimal switching time of the upper bound shows the mechanics that determine the optimality. The upper bound solution is not only a good benchmark to evaluate but also a clear guide to design any other practical controllers. To demonstrate these two benefits, four examples in literature were revisited: the single-degree-of-freedom electromagnetic and piezoelectric energy harvesters, the dual-mass vibration energy harvester and the quarter car hybrid electromagnetic suspension. A demonstration controller is proposed in all examples. The upper bound is used to evaluate the demonstration controller. The optimal switching time is used to explain the reason of a good or bad controller.

References

1.
Jia
,
Y.
,
2020
, “
Review of Nonlinear Vibration Energy Harvesting: Duffing, Bistability, Parametric, Stochastic and Others
,”
J. Intell. Mater. Syst. Struct.
,
31
(
7
), pp.
921
944
.10.1177/1045389X20905989
2.
Zou
,
H.-X.
,
Zhao
,
L.-C.
,
Gao
,
Q.-H.
,
Zuo
,
L.
,
Liu
,
F.-R.
,
Tan
,
T.
,
Wei
,
K.-X.
, and
Zhang
,
W.-M.
,
2019
, “
Mechanical Modulations for Enhancing Energy Harvesting: Principles, Methods and Applications
,”
Appl. Energy
,
255
, p.
113871
.10.1016/j.apenergy.2019.113871
3.
Cammarano
,
A.
,
Neild
,
S. A.
,
Burrow
,
S. G.
, and
Inman
,
D. J.
,
2014
, “
The Bandwidth of Optimized Nonlinear Vibration-Based Energy Harvesters
,”
Smart Mater. Struct.
,
23
(
5
), p.
055019
.10.1088/0964-1726/23/5/055019
4.
Garg
,
A.
, and
Dwivedy
,
S. K.
,
2020
, “
Dynamic Analysis of Piezoelectric Energy Harvester Under Combination Parametric and Internal Resonance: A Theoretical and Experimental Study
,”
Nonlinear Dyn.
,
101
(
4
), pp.
2107
2129
.10.1007/s11071-020-05931-w
5.
Rajarathinam
,
M.
, and
Ali
,
S. F.
,
2018
, “
Energy Generation in a Hybrid Harvester Under Harmonic Excitation
,”
Energy Convers. Manage.
,
155
, pp.
10
19
.10.1016/j.enconman.2017.10.054
6.
Malaji
,
P. V.
,
Friswell
,
M. I.
,
Adhikari
,
S.
, and
Litak
,
G.
,
2020
, “
Enhancement of Harvesting Capability of Coupled Nonlinear Energy Harvesters Through High Energy Orbits
,”
AIP Adv.
,
10
(
8
), p.
085315
.10.1063/5.0014426
7.
Tai
,
W.-C.
, and
Zuo
,
L.
,
2017
, “
On Optimization of Energy Harvesting From Base-Excited Vibration
,”
J. Sound Vib.
,
411
, pp.
47
59
.10.1016/j.jsv.2017.08.032
8.
Tang
,
X.
, and
Zuo
,
L.
,
2011
, “
Enhanced Vibration Energy Harvesting Using Dual-Mass Systems
,”
J. Sound Vib.
,
330
(
21
), pp.
5199
5209
.10.1016/j.jsv.2011.05.019
9.
Wang
,
J.
,
2021
, “
Optimal Design for Energy Harvesting Vibration Absorbers
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
5
), p.
051008
.10.1115/1.4049235
10.
Casciati
,
F.
,
Magonette
,
G.
, and
Marazzi
,
F.
,
2006
,
Technology of Semi-Active Devices and Applications in Vibration Mitigation
,
Wiley
,
Chichester, UK
.
11.
Savaresi
,
S. M.
,
Poussot-Vassal
,
C.
,
Spelta
,
C.
,
Sename
,
O.
, and
Dugard
,
L.
,
2010
,
Semi-Active Suspension Control, Design for Vehicles
,
Butterworth-Heinemann
,
Oxford, UK
.
12.
La
,
V. D.
, and
Tra Phan
,
M. T.
,
2018
, “
Optimization of Two-Tuning-Knob Single-Sensor Strategy for Semi-Active Isolation
,”
J. Sound Vib.
,
434
, pp.
126
143
.10.1016/j.jsv.2018.07.045
13.
Rojas
,
R. A.
, and
Carcaterra
,
A.
,
2018
, “
An Approach to Optimal Semi-Active Control of Vibration Energy Harvesting Based on MEMS
,”
Mech. Syst. Signal Process.
,
107
, pp.
291
316
.10.1016/j.ymssp.2017.11.005
14.
Zhang
,
Y.
,
Chen
,
H.
,
Guo
,
K.
,
Zhang
,
X.
, and
Eben Li
,
S.
,
2017
, “
Electro-Hydraulic Damper for Energy Harvesting Suspension: Modeling, Prototyping and Experimental Validation
,”
Appl. Energy
,
199
, pp.
1
12
.10.1016/j.apenergy.2017.04.085
15.
Han
,
J.
,
Kitazawa
,
D.
,
Kinoshita
,
T.
,
Maeda
,
T.
, and
Itakura
,
H.
,
2019
, “
Experimental Investigation on a Cabin-Suspended Catamaran in Terms of Motion Reduction and Wave Energy Harvesting by Means of a Semi-Active Motion Control System
,”
Appl. Ocean Res.
,
83
, pp.
88
102
.10.1016/j.apor.2018.12.003
16.
Ning
,
D.
,
Sun
,
S.
,
Du
,
H.
,
Li
,
W.
, and
Zhang
,
N.
,
2018
, “
Vibration Control of an Energy Regenerative Seat Suspension With Variable External Resistance
,”
Mech. Syst. Signal Process.
,
106
, pp.
94
113
.10.1016/j.ymssp.2017.12.036
17.
Di Monaco
,
F.
,
Tehrani
,
M.
,
Elliot
,
S.
,
Bonisoli
,
E.
, and
Tornincasa
,
S.
,
2013
, “
Energy Harvesting Using Semi-Active Control
,”
J. Sound Vib.
,
332
(
23
), pp.
6033
6043
.10.1016/j.jsv.2013.06.005
18.
Caruso
,
G.
,
Galeani
,
S.
, and
Menini
,
L.
,
2018
, “
Semi-Active Damping and Energy Harvesting Using an Electromagnetic Transducer
,”
J. Vib. Control
,
24
(
12
), pp.
2542
2561
.10.1177/1077546316688993
19.
Wang
,
Y.
, and
Inman
,
D. J.
,
2012
, “
A Survey of Control Strategies for Simultaneous Vibration Suppression and Energy Harvesting Via Piezoceramics
,”
J. Intell. Mater. Syst. Struct.
,
23
(
18
), pp.
2021
2037
.10.1177/1045389X12444485
20.
Ning
,
D.
,
Du
,
H.
,
Sun
,
S.
,
Li
,
W.
, and
Li
,
W.
,
2018
, “
An Energy Saving Variable Damping Seat Suspension System With Regeneration Capability
,”
IEEE Trans. Ind. Electron.
,
65
(
10
), pp.
8080
8091
.10.1109/TIE.2018.2803756
21.
Ning
,
D.
,
Du
,
H.
,
Sun
,
S.
,
Li
,
W.
,
Zhang
,
N.
, and
Dong
,
M.
,
2019
, “
A Novel Electrical Variable Stiffness Device for Vehicle Seat Suspension Control With Mismatched Disturbance Compensation
,”
IEEE/ASME Trans. Mechatronics
,
24
(
5
), pp.
2019
2030
.10.1109/TMECH.2019.2929543
22.
Ning
,
D.
,
Du
,
H.
,
Sun
,
S.
,
Zheng
,
M.
,
Li
,
W.
,
Zhang
,
N.
, and
Jia
,
Z.
,
2020
, “
An Electromagnetic Variable Stiffness Device for Semiactive Seat Suspension Vibration Control
,”
IEEE Trans. Ind. Electron.
,
67
(
8
), pp.
6773
6784
.10.1109/TIE.2019.2936994
23.
Potter
,
J. N.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2010
, “
Generalisation and Optimisation of Semi-Active, on-Off Switching Controllers for Single Degree-of-Freedom Systems
,”
J. Sound Vib.
,
329
(
13
), pp.
2450
2462
.10.1016/j.jsv.2009.12.011
24.
Viet
,
L. D.
, and
Tra My
,
P. T.
,
2019
, “
Theoretical Upper and Lower Bounds of the Performance of an on-Off Damping Dynamic Vibration Absorber Attached to a Multi-Degree-of-Freedom System
,”
ASME J. Vib. Acoust
,
141
(
3
), p.
034501
.10.1115/1.4042278
25.
Viet
,
L. D.
, and
Tra My
,
P. T.
,
2019
, “
Lower Bound of Performance Index of an On–Off Damper in a State-Space System
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
12
), pp.
4288
4298
.10.1177/0954406218819028
26.
Ataei
,
M.
,
Asadi
,
E.
,
Goodarzi
,
A.
,
Khajepour
,
A.
, and
Khamesee
,
M. B.
,
2017
, “
Multi-Objective Optimization of a Hybrid Electromagnetic Suspension System for Ride Comfort, Road Holding and Regenerated Power
,”
J. Vib. Control
,
23
(
5
), pp.
782
793
.10.1177/1077546315585219
You do not currently have access to this content.