Abstract

Fractional order controllers become increasingly popular due to their versatility and superiority in various performances. However, the bottleneck in deploying these tools in practice is related to their analog or numerical implementation. Numerical approximations are usually employed in which the approximation of fractional differintegrator is the foundation. Generally, the following three identical equations always hold, i.e., 1sα1s1α=1s,sα1sα=1, and sαs1α=s. However, for the approximate models of fractional differintegrator sα,α(1,0)(0,1), there usually exist some conflicts on the mentioned equations, which might enlarge the approximation error or even cause fallacies in multiple orders occasion. To overcome the conflicts, this brief develops a piecewise approximate model and provides two procedures for designing the model parameters. The comparison with several existing methods shows that the proposed methods do not only satisfy the equalities but also achieve high approximation accuracy. From this, it is believed that this work can serve for simulation and realization of fractional order controllers more friendly.

References

1.
Sun
,
H. G.
,
Zhang
,
Y.
,
Baleanu
,
D.
,
Chen
,
W.
, and
Chen
,
Y. Q.
,
2018
, “
A New Collection of Real World Applications of Fractional Calculus in Science and Engineering
,”
Commun. Nonlinear Sci. Numer. Simul.
,
64
, pp.
213
231
.10.1016/j.cnsns.2018.04.019
2.
Chen
,
L.
,
Huang
,
T.
,
Tenreiro Machado
,
J. A.
,
Lopes
,
A. M.
,
Chai
,
Y.
, and
Wu
,
R.
,
2019
, “
Delay-Dependent Criterion for Asymptotic Stability of a Class of Fractional-Order Memristive Neural Networks With Time-Varying Delays
,”
Neural Networks
,
118
, pp.
289
299
.10.1016/j.neunet.2019.07.006
3.
Semary
,
M. S.
,
Fouda
,
M. E.
,
Hassan
,
H. N.
, and
Radwan
,
A. G.
,
2019
, “
Realization of Fractional-Order Capacitor Based on Passive Symmetric Network
,”
J. Adv. Res.
,
18
, pp.
147
159
.10.1016/j.jare.2019.02.004
4.
Adhikary
,
A.
,
Choudhary
,
S.
, and
Sen
,
S.
,
2018
, “
Optimal Design for Realizing a Grounded Fractional Order Inductor Using GIC
,”
IEEE Trans. Circ. Syst. I
,
65
(
8
), pp.
2411
2421
.10.1109/TCSI.2017.2787464
5.
Adhikary
,
A.
,
Sen
,
S.
, and
Biswas
,
K.
,
2016
, “
Practical Realization of Tunable Fractional Order Parallel Resonator and Fractional Order Filters
,”
IEEE Trans. Circ. Syst. I
,
63
(
8
), pp.
1142
1151
.
6.
Silva-Juárez
,
A.
,
Tlelo-Cuautle
,
E.
,
Fraga
,
L. G. D. L.
, and
Li
,
R.
,
2020
, “
FPGA-Based Implementation of Fractional-Order Chaotic Oscillators Using First-Order Active Filter Blocks
,”
J. Adv. Res.
,
25
, pp.
77
85
.10.1016/j.jare.2020.05.014
7.
Zhang
,
X. F.
, and
Chen
,
Y. Q.
,
2017
, “
Admissibility and Robust Stabilization of Continuous Linear Singular Fractional Order Systems With the Fractional Order α: The 0 < α < 1 Case
,”
ISA Trans.
,
82
, pp.
42
50
.10.1016/j.isatra.2017.03.008
8.
Zhang
,
X. F.
, and
Wang
,
Z.
,
2020
, “
Stability and Robust Stabilization of Uncertain Switched Fractional Order Systems
,”
ISA Trans.
,
103
, pp.
1
9
.10.1016/j.isatra.2020.03.019
9.
Chen
,
L. P.
,
Wu
,
R. C.
,
Cheng
,
Y.
, and
Chen
,
Y. Q.
,
2020
, “
Delay-Dependent and Order-Dependent Stability and Stabilization of Fractional-Order Linear Systems With Time-Varying Delay
,”
IEEE Trans. Circ. Syst. II
,
67
(
6
), pp.
1064
1068
.10.1109/TCSII.2019.2926135
10.
Shi
,
R. Q.
,
Li
,
Y.
, and
Wang
,
C. H.
,
2020
, “
Stability Analysis and Optimal Control of a Fractional-Order model for African Swine Fever
,”
Virus Res.
,
288
, p.
198111
.10.1016/j.virusres.2020.198111
11.
Shi
,
R. Q.
,
Lu
,
T.
, and
Wang
,
C. H.
,
2020
, “
Dynamic Analysis of a Fractional-Order Delayed Model for Hepatitis b Virus With Ctl Immune Response
,”
Virus Res.
,
277
, p.
197841
.10.1016/j.virusres.2019.197841
12.
Vinagre
,
B. M.
,
Podlubny
,
I.
,
Hernandez
,
A.
, and
Feliu
,
V.
,
2000
, “
Some Approximations of Fractional Order Operators Used in Control Theory and Applications
,”
Fract. Calculus Appl. Anal.
,
3
(
3
), pp.
231
248
.http://www.math.bas.bg/~fcaa/
13.
Oustaloup
,
A.
,
Levron
,
F.
,
Mathieu
,
B.
, and
Nanot
,
F. M.
,
2000
, “
Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis
,”
IEEE Trans. Circ. Syst. I
,
47
(
1
), pp.
25
39
.10.1109/81.817385
14.
Poinot
,
T.
, and
Trigeassou
,
J. C.
,
2003
, “
A Method for Modelling and Simulation of Fractional Systems
,”
Signal Process.
,
83
(
11
), pp.
2319
2333
.10.1016/S0165-1684(03)00185-3
15.
Krishna
,
B. T.
,
2011
, “
Studies on Fractional Order Differentiators and Integrators: A Survey
,”
Signal Process.
,
91
(
3
), pp.
386
426
.10.1016/j.sigpro.2010.06.022
16.
Meng
,
L.
, and
Xue
,
D. Y.
,
2012
, “
A New Approximation Algorithm of Fractional Order System Models Based Optimization
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
4
), p.
44504
.10.1115/1.4006072
17.
Romero
,
M.
,
De Madrid
,
A. P.
,
Mañoso
,
C.
, and
Vinagre
,
B. M.
,
2013
, “
IIR Approximations to the Fractional Differentiator/Integrator Using Chebyshev Polynomials Theory
,”
ISA Trans.
,
52
(
4
), pp.
461
468
.10.1016/j.isatra.2013.02.002
18.
Wei
,
Y. H.
,
Gao
,
Q.
,
Peng
,
C.
, and
Wang
,
Y.
,
2014
, “
A Rational Approximate Method to Fractional Order Systems
,”
Int. J. Control, Autom. Syst.
,
12
(
6
), pp.
1180
1186
.10.1007/s12555-013-0109-6
19.
Pakhira
,
A.
,
Das
,
S.
,
Pan
,
I.
, and
Das
,
S.
,
2015
, “
Symbolic Representation for Analog Realization of a Family of Fractional Order Controller Structures Via Continued Fraction Expansion
,”
ISA Trans.
,
57
, pp.
390
402
.10.1016/j.isatra.2015.01.007
20.
Wei
,
Y. H.
,
Tse
,
P. W.
,
Du
,
B.
, and
Wang
,
Y.
,
2016
, “
An Innovative Fixed-Pole Numerical Approximation for Fractional Order Systems
,”
ISA Trans.
,
62
, pp.
94
102
.10.1016/j.isatra.2016.01.010
21.
Tavazoei
,
M. S.
,
2016
, “
Criteria for Response Monotonicity Preserving in Approximation of Fractional Order Systems
,”
IEEE/CAA J. Autom. Sin.
,
3
(
4
), pp.
422
429
.10.1109/jas.2016.7510091
22.
Abdelaty
,
A. M.
,
Elwakil
,
A. S.
,
Radwan
,
A. G.
,
Psychalinos
,
C.
, and
Maundy
,
B. J.
,
2018
, “
Approximation of the Fractional-Order Laplacian s α as a Weighted Sum of First-Order High-Pass Filters
,”
IEEE Trans. Circ. Syst. II
,
65
(
8
), pp.
1114
1118
.10.1109/tcsii.2018.2808949
23.
Deniz
,
F. N.
,
Alagoz
,
B. B.
,
Tan
,
N.
, and
Atherton
,
D. P.
,
2016
, “
An Integer Order Approximation Method Based on Stability Boundary Locus for Fractional Order Derivative/Integrator Operators
,”
ISA Trans.
,
62
, pp.
154
163
.10.1016/j.isatra.2016.01.020
24.
Sabatier
,
J.
,
2018
, “
Solutions to the Sub-Optimality and Stability Issues of Recursive Pole and Zero Distribution Algorithms for the Approximation of Fractional Order Models
,”
Algorithms
,
11
(
7
), p.
103
.10.3390/a11070103
25.
De Keyser
,
R.
,
Muresan
,
C. I.
, and
Ionescu
,
C. M.
,
2018
, “
An Efficient Algorithm for Low-Order Direct Discrete-Time Implementation of Fractional Order Transfer Functions
,”
ISA Trans.
,
74
, pp.
229
238
.10.1016/j.isatra.2018.01.026
26.
Bai
,
L.
, and
Xue
,
D. Y.
,
2018
, “
Universal Block Diagram Based Modeling and Simulation Schemes for Fractional-Order Control Systems
,”
ISA Trans.
,
82
, pp.
153
162
.10.1016/j.isatra.2017.04.018
27.
Liang
,
S.
,
Peng
,
C.
,
Liao
,
Z.
, and
Wang
,
Y.
,
2014
, “
State Space Approximation for General Fractional Order Dynamic Systems
,”
Int. J. Syst. Sci.
,
45
(
10
), pp.
2203
2212
.10.1080/00207721.2013.766773
28.
Liang
,
Y. S.
, and
Lu
,
J. L.
,
2017
, “
Direct Low Order Rational Approximations for Fractional Order Systems in Narrow Frequency Band: A Fix-Pole Method
,”
J. Circ., Syst. Comput.
,
26
(
04
), p.
1750065
.10.1142/S0218126617500657
29.
Wei
,
Y. H.
,
Wang
,
J. C.
,
Liu
,
T. Y.
, and
Wang
,
Y.
,
2019
, “
Fixed Pole Based Modeling and Simulation Schemes for Fractional Order Systems
,”
ISA Trans.
,
84
, pp.
43
54
.10.1016/j.isatra.2018.10.001
30.
Li
,
A.
,
Wei
,
Y.
,
Wang
,
J.
, and
Wang
,
Y.
,
2020
, “
A Numerical Approximation Method for Fractional Order Systems With New Distributions of Zeros and Poles
,”
ISA Trans.
,
99
, pp.
20
27
.10.1016/j.isatra.2019.09.001
31.
Wei
,
Y. H.
,
Zhang
,
H.
,
Hou
,
Y. Q.
, and
Cheng
,
K.
,
2021
, “
Multiple Fixed Pole Based Rational Approximation for Fractional Order Systems
,”
ASME J. Dyn. Syst. Meas. Control
, 143(6), p. 061008.10.1115/1.4049557
You do not currently have access to this content.