Abstract

Productivity, reliability, controllability, flexibility, and affordable costs represent key aspects in mobile machines. Additionally, due to the high fuel price and the introduction of stringent emission regulations for diesel engines, the reduction of fuel consumption while persevering the existing performance is the current demand. In order to satisfy and maximize the above requirements, different hydraulic system architectures have been developed during the last decades. Both academia and industry have been investing considerable resources delivering numerous outcomes that require a classification. This review paper closes this gap by analyzing and classifying the working hydraulics of nonhybrid, valve-controlled mobile machines starting from the 1980s to the state of the art. Hydraulic layouts are addressed and categorized by both discussing their fundamentals and evolutions, and by pointing out their pros and cons in a way to provide the readers with a comprehensive overview of the systems currently available on the market and at the research stage.

References

1.
Energy Information Administration
,
2019
, “U.S. On-Highway Diesel Fuel Prices,” U.S. Energy Information Administration, Washington, DC, accessed Jan. 19, https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMD_EPD2D_PTE_NUS_DPG&f=W
2.
Liang
,
X.
,
Virvalo
,
T.
, and
Linjama
,
M.
,
1999
, “
The Influence of Control Valves on the Efficiency of a Hydraulic Crane
,”
The Sixth Scandinavian International Conference on Fluid Power
,
Tampere, Finland
, May 26–28, pp
381
394
.https://tutcris.tut.fi/portal/en/publications/the-influence-of-control-valves-on-the-efficiency-of-a-hydraulic-crane(180427b0-952f-4e85-b66a-f10bb1426668).html
3.
Hagen
,
D.
,
Padovani
,
D.
, and
Choux
,
M.
,
2019
, “
A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder Versus a Conventional Valve-Controlled Actuator—Part 2: Energy Efficiency
,”
Actuators
,
8
(
4
), p. 78.10.3390/act8040078
4.
Love
,
L.
,
Lanke
,
E.
, and
Alles
,
P.
,
2012
, “
Estimating the Impact (Energy, Emissions and Economics) of the U.S. Fluid Power Industry
,”
Oak Ridge National Laboratory (ORNL)
,
Oak Ridge
,
TN
.
5.
Backé
,
W.
,
1993
, “
The Present and Future of Fluid Power
,”
Proc. Inst. Mech. Eng., Part I
,
207
(
4
), pp. 193–212.10.1243/PIME_PROC_1993_207_343_02
6.
Backé
,
W.
,
1995
, “
Hydraulic Drives With High Efficiency
,”
ASME FPST-Vol 2, pp. 45–73.
7.
Murrenhoff
,
H.
,
2007
, “
Trends in Drive Trains and Work Hydraulics
,”
The Future of Power Transmission
,
>Milan, Italy
.
8.
Murrenhoff
,
H.
,
Sgro
,
S.
, and
Vukovic
,
M.
,
2014
, “
An Overview of Energy Saving Architectures for Mobile Applications
,”
Ninth International Fluid Power Conference
,
Aachen, Germany
, March
24
26
.https://www.researchgate.net/publication/261697195_An_Overview_of_Energy_Saving_Architectures_for_Mobile_Applications
9.
Padovani
,
D.
,
Ketelsen
,
S.
,
Hagen
,
D.
, and
Schmidt
,
L.
,
2019
, “
A Self-Contained Electro-Hydraulic Cylinder With Passive Load-Holding Capability
,”
Energies
,
12
(
2
), p.
292
.10.3390/en12020292
10.
Ketelsen
,
S.
,
Padovani
,
D.
,
Andersen
,
T.
,
Ebbesen
,
M.
, and
Schmidt
,
L.
,
2019
, “
Classification and Review of Pump-Controlled Differential Cylinder Drives
,”
Energies
,
12
(
7
), p.
1293
.10.3390/en12071293
11.
Casoli
,
P.
,
Riccò
,
L.
,
Campanini
,
F.
, and
Bedotti
,
A.
,
2016
, “
Hydraulic Hybrid Excavator - Mathematical Model Validation and Energy Analysis
,”
Energies
,
9
(
12
), p.
1002
.10.3390/en9121002
12.
Padovani
,
D.
,
2016
, “
A Hybrid Hydraulic Propulsion System for Railway Machinery
,”
ASME
Paper No. JRC2016-5824.10.1115/JRC2016-5824
13.
Andersson
,
B. R.
,
1997
, “
Valves Contribution to System Damping
,”
Fifth Scandinavian International Conference on Fluid Power
,
Linköping, Sweden
,
May 28–30
.
14.
European Parliament
,
2006
, “
Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on Machinery, and Amending Directive 95/16/EC (Recast)
,” Official Journal of the European Union, L 157/24, Sept. 9, 2006.
15.
Miller
,
J. A.
, and
Eagles
,
D. M.
,
1983
, “
Open Center Load Sensing Hydraulic System
,” U.S. Patent No. 4,470,260.
16.
Bouzard
,
G. R.
,
1994
, “
Pressure Compensated Pump Control for Forestry Log Skidders
,”
SAE
Paper No. 941716.10.4271/941716
17.
Devier
,
L. J.
,
Krone
,
J. J.
, and
Lunzman
,
S. V.
,
1994
, “
Hydraulic Flow Priority System
,” U.S. Patent No. 5,560,387.
18.
Vukovic
,
M.
,
Leifeld
,
R.
, and
Murrenhoff
,
H.
,
2017
, “
Reducing Fuel Consumption in Hydraulic Excavators—A Comprehensive Analysis
,”
Energies
,
10
(
5
), p.
687
.10.3390/en10050687
19.
Altare
,
G.
,
Franzoni
,
G.
,
Harsia
,
J.
, and
Hickey
,
T.
,
2016
, “
Latest Technology Advancements in Hydraulic Systems for Refuse Vehicle Applications: The Case of an Automated Side Loader
,”
Tenth International Fluid Power Conference
, Dresden, Germany, Mar. 8–10, pp.
351
364
.https://tud.qucosa.de/landing-page/?tx_dlf[id]=https%3A%2F%2Ftud.qucosa.de%2Fapi%2Fqucosa%253A29402%2Fmets
20.
Skirde
,
E.
, and
Geerling
,
G.
,
2006
, “
Mobile Hydraulics—An Overview
,”
Fifth International Fluid Power Conference
,
Aachen, Germany
, March 20–22.
21.
Burk
,
R.
,
1981
, “
Agricultural Tractor Hydraulic Power Use
,”
SAE
Paper No. 810928.
10.4271/810928
22.
Altare
,
G.
,
Padovani
,
D.
, and
Nervegna
,
N.
,
2012
, “
A Commercial Excavator: Analysis, Modelling and Simulation of the Hydraulic Circuit
,”
SAE
Paper No. 2012-01-2040.
10.4271/2012-01-2040
23.
Hill
,
H. W.
,
1990
, “
The Case 621 Wheel Loader
,”
SAE
Paper No. 900888.
10.4271/900888
24.
Aoki
,
Y.
,
Uehara
,
K.
,
Hirose
,
K.
,
Karakama
,
T.
,
Morita
,
K.
,
Akiyama
,
T.
, and
Oda
,
Y.
,
1994
, “
Load Sensing Fluid Power Systems
,”
SAE
Paper No. 941714.
10.4271/941714
25.
Qureshi
,
A. S.
,
1981
, “
Energy Conservation and Proportional Control With Load Sensing Hydraulic Systems
,”
SAE Paper No. 810929.
26.
Axin
,
M.
,
Eriksson
,
B.
, and
Krus
,
P.
,
2014
, “
Flow Versus Pressure Control of Pumps in Mobile Hydraulic Systems
,”
Proc. Inst. Mech. Eng. Part I
,
228
(
4
), pp.
245
56
.10.1177/0959651813512820
27.
Axin
,
M.
,
2015
, “
Mobile Working Hydraulic System Dynamics
,” Ph.D. dissertation, Linköping University, Linköping, Sweden.
28.
Roth
,
D.
, and
Erkkila
,
M.
,
1993
, “
Hydraulic Control Apparatus for a Plurality of Users
,” U.S. Patent No. 5,528,911.
29.
Harsia
,
J.
, and
Stegemann
,
P.
,
2014
, “
Variable Load Sense Open Center Hybrid System
,” U.S. Patent No. 9,777,464.
30.
Franzoni
,
G.
,
2015
, “
Parker Variable Flow Open-Center (VFO)
,” Parker Hannifin Corporation Global Mobile Systems, Elk Grove Village, IL.
31.
Cheong
,
H. K.
,
2010
, “
Negative Control Type Hydraulic System
,” U.S. Patent No. 8,713,903.
32.
Liao
,
W.
,
Chen
,
S.
,
Chen
,
C.
,
Du
,
H.
,
Wang
,
F.
, and
Zhao
,
N.
,
2012
, “
Research of Negative Flow Control Characteristics for Axial Piston Pump Based on Hydraulic and Mechanical Co-Simulation
,”
Third International Conference on System Science, Engineering Design and Manufacturing Informatization
,
Chengdu, China
, Oct. 20–21, pp.
79
83
.10.1109/ICSSEM.2012.6340813
33.
Brendan
,
C.
,
2017
,
The Mobile Hydraulics Handbook
,
HydraulicSupermarket.com
,
West Perth, WA
.
34.
Gessi
,
S.
, and
Martelli
,
M.
,
2015
, “
A Survey on Negative Control Architectures for Hydraulic Excavators
,”
ASME
Paper No. FPMC2015-9569.
10.1115/FPMC2015-9569
35.
Sprengel
,
M.
, and
Ivantysynova
,
M.
,
2012
, “
Coupling Displacement Controlled Actuation With Power Split Transmissions in Hydraulic Hybrid Systems for Off-Highway Vehicles
,”
Fluid Power and Motion Control
,
Bath, UK
, Sept. 12–14, pp.
505
517
.
36.
Budzich
,
T.
,
1968
, “
Flow Proportional Valve for Load Responsitive System
,” U.S. Patent No. 3,470,694.
37.
Wilke
,
R.
,
1987
, “
Post Compensated Unitary Hydraulic Valve
,” Split Pump Intelligent 4,693,272.
38.
Obertrifter
,
B.
, and
Stellwagen
,
A.
,
1992
, “
Load Independent Valve Control for a Plurality of Hydraulic Users
,” U.S. Patent No. 5,138,837.
39.
Rosenbecker
,
K.
, and
Chmielewski
,
C.
,
1993
, “
HUSCO's CompChek® Technology—An Innovative Approach for Load-Sensing Systems
,”
SAE
Paper No. 932406.
10.4271/932406
40.
Zarotti
,
L.
, and
Nervegna
,
N.
,
1988
, “
Saturation Problems in Load-Sensing Architectures
,”
National Conference on Fluid Power
,
Chicago, IL
, Oct.
11
13
.
41.
LaFayette
,
G.
,
Gruettert
,
S.
,
Gandrud
,
M.
,
Laudenbach
,
B.
, and
Koenemann
,
D.
,
2011
, “
Integration of Engine & Hydraulic Controls for Best Operation
,”
52nd National Conference on Fluid Power
,
Las Vegas, NV
, Mar.
23
25
.
42.
Daniel
,
C.
,
2011
, “
System Efficiency Impact of Choosing Alternative Load Independent Spool Valve Technologies
,”
52nd
National Conference on Fluid Power,
Las Vegas, NV
, Mar.
23
25
.
43.
Kropp
,
W.
,
1986
, “
Multiple Consumer Hydraulic Mechanisms
,” U.S. Patent No. 4,617,854.
44.
Christensen
,
T.
,
Christensen
,
C.
, and
Zenker
,
S.
,
2003
, “
Hydraulic Valve Arrangement
,” U.S. Patent No. 6,971,407.
45.
Altare
,
G.
,
Padovani
,
D.
, and
Nervegna
,
N.
,
2013
, “
A Close-Up View of a Load Sensing ‘Hybrid’ Proportional Directional Control Valve
,”
JFPS Int. J. Fluid Power Syst.
,
6
(
1
), pp.
8
17
.10.5739/jfpsij.6.8
46.
Takeuchi
,
M.
,
Ikei
,
K.
,
Karakama
,
T.
,
Akashi
,
M.
,
Akiyama
,
T.
,
Maruyama
,
J.
, and
Taka
,
K.
,
1993
, “
Pressurized Fluid Supply System
,” Split Pump Intelligent 5,533,334.
47.
Breeden
,
R. H.
,
1981
, “
Development of a High Pressure Load Sensing Mobile Valve
,”
SAE Tech. Paper Ser.
,
90
(
3
), pp.
2258
2265
.
48.
Sheth
,
J. M.
, and
Nanda
,
V. K.
,
1985
, “
Electrohydraulic Load Sensing Actuator Mounted Directional Control Valve
,”
International Off-Highway & Powerplant Congress
,
Milwaukee, WI
, Sept.
9
12
.
49.
Lantto
,
B.
,
Palmberg
,
J.-O.
, and
Krus
,
P.
,
1990
, “
Static and Dynamic Performance of Mobile Load Sensing Systems With Two Different Types Of Pressure—Compensated Valves
,”
SAE
Paper No. 901552.10.4271/901552
50.
Zimmerman
,
J. D.
,
Pelosi
,
M.
,
Williamson
,
C. A.
, and
Ivantysynova
,
M.
,
2007
, “
Energy Consumption of an LS Excavator Hydraulic System
,”
ASME
Paper No. IMECE2007-42267.
10.1115/IMECE2007-42267
51.
Cetinkunt
,
S.
,
Pinsopon
,
U.
,
Chen
,
C.
,
Egelja
,
A.
, and
Anwar
,
S.
,
2004
, “
Positive Flow Control of Closed-Center Electrohydraulic Implement-by-Wire Systems for Mobile Equipment Applications
,”
Mechatronics
,
14
(
4
), pp.
403
–4
20
.10.1016/S0957-4158(03)00067-9
52.
Yasuda
,
T.
, and
Aoyagi
,
Y.
,
1992
, “
Hydraulic Drive System for Construction Machines
,” U.S. Split Pump Intelligent No. 5,295,795.
53.
Hirata
,
T.
,
Sugiyama
,
G.
,
Ishikawa
,
K.
, and
Ochiai
,
M.
,
1993
, “
Hydraulic Drive System for Hydraulic Working Machines
,” U.S. Patent No. 5,421,155.
54.
Hirata
,
T.
,
Sugiyama
,
G.
,
Watanabe
,
H.
, and
Yoshinaga
,
S.
,
1994
, “
Hydraulic Pump Control System
,” U.S. Patent No. 5,575,148.
55.
Nishikawa
,
H.
,
Akiyama
,
S.
,
Shimizu
,
Y.
,
Doi
,
A.
,
Shimahara
,
S.
,
Nakanishi
,
M.
, and
Shibata
,
M.
,
2010
, “
Hydraulic Control Apparatus for Work Machine
,” U.S. Patent No. 8,899,035.
56.
Cobo
,
M. A.
,
Ingram
,
R. G.
,
Reiners
,
E. A.
, and
Vande Wiele
,
M. F.
,
1997
, “
Positive Flow Control System
,” U.S. Patent No. 5,873,244.
57.
Cho
,
Y.-L.
,
Kim
,
K.-y.
, and
Jang
,
D.-S.
,
2010
, “
Development of the Energy Efficient Electro-Hydraulic System for Excavator
,”
Seventh International Fluid Power Conference
, Aachen, Germany, Mar.
22
24
.
58.
Gessi
,
S.
, and
Martelli
,
M.
,
2010
, “
Comparative Analysis on the Main Architectures for Hydraulic Mobile Machines
,”
Seventh FPNI Ph.D. Symposium on Fluid Power
,
Reggio Emilia, Italy
, June
27
30
.
59.
Sørensen
,
J. K.
,
Hansen
,
M. R.
, and
Ebbesen
,
M. K.
,
2015
, “
Load Independent Velocity Control on Boom Motion Using Pressure Control Valve
,”
15th Scandinavian International Conference on Fluid Power
,
Tampere, Finland
, June
7
9
.
60.
ISO,
2008
, “
Fluid Power Systems and Components—Vocabulary
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 5598:2008.
61.
Destro
,
M. C.
, and
De Negri
,
V. J.
,
2018
, “
Method for Combining Valves With Symmetric and Asymmetric Cylinders for Hydraulic Systems
,”
Int. J. Fluid Power
,
19
(
3
), pp.
126
139
.10.1080/14399776.2018.1483164
62.
Murrenhoff
,
H.
,
2003
, “
Trends in Valve Development
,”
Ölhydraulik Pneumatik
,
46
(
4
), pp. 1–36.
63.
Hagen
,
D.
,
Padovani
,
D.
, and
Choux
,
M.
,
2019
, “
A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder Versus a Conventional Valve-Controlled Actuator—Part 1: Motion Control
,”
Actuators,
8
(
4
), p.
79
.10.3390/act8040079
64.
Jelali
,
M.
, and
Kroll
,
A.
,
2003
,
Hydraulic Servo-Systems
,
Springer-Verlag
,
London, UK
.
65.
Lichtberge
,
B.
,
2013
, “
Tamping Unit for a Rail Tamping Machine
,” European Patent No. 2,770,108,A1.
66.
Du
,
H.
,
Wei
,
J.
, and
Fang
,
J.
,
2016
, “
The Design, Simulation, and Experiment of High-Accuracy Multi-Axle Electro-Hydraulic Control Servo Steering System
,”
Adv. Mech. Eng.
,
8
(
10
), pp. 1–15.10.1177/1687814016674383
67.
Linjama
,
M.
, and
Vilenius
,
M.
,
2005
, “
Energy-Efficient Motion Control of a Digital Hydraulic Joint Actuator
,”
Sixth JFPS International Symposium on Fluid Power
,
T
sukuba, Japan
, Nov.
7
10
.https://www.researchgate.net/publication/267387947_ENERGY-EFFICIENT_MOTION_CONTROL_OF_A_DIGITAL_HYDRAULIC_JOINT_ACTUATOR
68.
Linjama
,
M.
,
2011
, “
Digital Fluid Power—State of the Art
,”
12th Scandinavian International Conference on Fluid Power
,
Tampere, Finland
, May
18
20
.
69.
Schepers
,
I.
,
Weiler
,
D.
, and
Weber
,
J.
,
2012
, “
Comparison and Evaluation of Digital Control Methods for on/Off Valves
,”
Fifth Workshop on Digital Fluid Power
,
Tampere, Finland
, Oct.
24
25
.
70.
Linjama
,
M.
,
Vihtanen
,
H.-P.
,
Sipola
,
A.
, and
Vilenius
,
M.
,
2009
, “
Secondary Controlled Multi-Chamber Hydraulic Cylinder
,”
11th Scandinavian International Conference on Fluid Power
,
Linköping, Sweden
, June
2
4
.https://tutcris.tut.fi/portal/en/publications/secondary-controlled-multichamber-hydraulic-cylinder(e30bd9a1-db4a-4a9a-930e-7cc4ada8baa7)/export.html
71.
Heitzig
,
S.
,
Sgro
,
S.
, and
Theissen
,
H.
,
2012
, “
Energy Efficiency of Hydraulic Systems With Shared Digital Pumps
,”
Int. J. Fluid Power
,
13
(
3
), pp.
49
57
.10.1080/14399776.2012.10781060
72.
Huova
,
M.
,
Karvonen
,
M.
,
Ahola
,
V.
,
Linjama
,
M.
, and
Vilenius
,
M.
,
2010
, “
Energy Efficient Control of Multiactuator Digital Hydraulic Mobile Machine
,”
Seventh International Fluid Power Conference
,
Aachen, Germany
, Mar.
22
24
.
73.
Lumkes
,
J.
, and
Andruch
,
J.
,
2011
, “
Hydraulic Circuit for Reconfigurable and Efficient Fluid Power Systems
,”
12th Scandinavian International Conference on Fluid Power
,
Tampere, Finland
, May
18
20
.
74.
Fischer
,
H.
,
Laamanen
,
A.
,
Anssi
,
L.-H.
,
Schafer
,
O.
,
Karvonen
,
M.
,
Karhu
,
O.
,
Huhtala
,
K.
,
Pulkkinen
,
E.-P.
, and
Huttunen
,
A.
,
2015
, “
Digital Hydraulics on Rails—Pilot Project of Improving Reliability on Railway Rolling Stock by Utilizing Digital Valve System
,”
The 14th Scandinavian International Conference on Fluid Power
,
Tampere, Finland
, May
20
23
.
75.
Ketonen
,
M.
, and
Linjama
,
M.
,
2017
, “
Simulation Study of a Digital Hydraulic Independent Metering Valve System on an Excavator
,”
15th Scandinavian International Conference on Fluid Power
,
Linköping, Sweden
, June
7
9
.
76.
Winkler
,
B.
,
2017
, “
Recent Advances in Digital Hydraulic Components and Applications
,”
Ninth Workshop on Digital Fluid Power
,
Aalborg, Denmark
, Sept.
7
8
.
77.
Dell'Amico
,
A.
,
Carlsson
,
M.
,
Norlin
,
E.
, and
Sethson
,
M.
,
2013
, “
Investigation of a Digital Hydraulic Actuation System on an Excavator Arm
,”
13th Scandinavian International Conference on Fluid Power International Conference on Fluid Power
,
Linköping, Sweden
, June
3
5
.https://www.researchgate.net/publication/299685566_Investigation_of_a_Digital_Hydraulic_Actuation_System_on_an_Excavator_Arm
78.
Manring
,
N. D.
, and
Mehta
,
V. S.
,
2011
, “
Physical Limitations for the Bandwidth Frequency of a Pressure Controlled, Axial-Piston Pump
,”
ASME J. Dyn. Syst., Meas. Control
,
133
(
6
), p.
061005
.10.1115/1.4004056
79.
Manring
,
N. D.
,
2016
, “
Mapping the Efficiency for a Hydrostatic Transmission
,”
ASME J. Dyn. Syst., Meas. Control
,
138
(
3
), p.
031004
.10.1115/1.4032289
80.
Caldwell
,
N. J.
,
2007
, “
Digital Displacement Hydrostatic Transmission Systems
,” Ph.D dissertation, University of Edinburgh, Edinburgh, UK.
81.
Williamson
,
C.
, and
Ivantysynova
,
M.
,
2007
, “
The Effect of Pump Efficiency on Displacement-Controlled Actuator Systems
,”
Proceedings of the Eight Scandinavian International Conference on Fluid Power
, Tampere, Finland, May 21–23, pp.
301
326
.
82.
Salter
,
S. H.
, and
Rea
,
M.
,
1984
, “
Hydraulics for Wind
,”
European Wind Energy Conference
,
Hamburg, Germany
, Oct. 23.
83.
Rampen
,
W. H. S.
,
1992
, “
The Digital Displacement Hydraulic Piston Pump
,” Ph.D dissertation, University of Edinburgh, Edinburgh, UK.
84.
Heikkilä
,
M.
,
Tammisto
,
J.
,
Huova
,
M.
,
Huhtala
,
A. K.
, and
Linjama
,
M.
,
2010
, “
Experimental Evaluation of a Digital Hydraulic Power Management System
,”
Third Workshop on Digital Fluid Power
,
Tampere, Finland
, Oct.
13
14
.https://tutcris.tut.fi/portal/en/publications/experimental-evaluation-of-a-digital-hydraulic-power-management-system(67923c84-9d04-4888-acd5-a3b644c76937).html
85.
Budden
,
J. J.
, and
Williamson
,
C.
,
2019
, “
Danfoss Digital Displacement® Excavator: Test Results and Analysis
,”
ASME
Paper No. FPMC2019-1669
. 10.1115/FPMC2019-1669
86.
Grösbrink
,
B.
, and
Harms
,
H.-H.
,
2009
, “
A New Approach to an Energy Saving Hydraulic Hystem for Mobile Machines
,”
11th Scandinavian International Conference on Fluid Power
,
Linköping, Sweden
, June
2
4
.
87.
Pintore
,
F.
,
Borghi
,
M.
,
Morselli
,
R.
,
Benevelli
,
A.
,
Zardin
,
B.
, and
Belluzzi
,
F.
,
2014
, “
Modelling and Simulation of the Hydraulic Circuit of an Agricultural Tractor
,”
ASME
Paper No. FPNI2014-7848
.10.1115/FPNI2014-7848
88.
Lettini
,
A.
,
Havermann
,
M.
,
Guidetti
,
M.
, and
Fornaciari
,
A.
,
2010
, “
Improved Functionalities and Energy Saving Potential on Mobile Machines Combining Electronics With Flow Sharing Valve and Variable Displacement Pump
,”
Seventh International Fluid Power Conference
,
Aachen, Germany
, Mar.
22
24
.
89.
Hansen
,
R. H.
,
Andersen
,
T. O.
, and
Pedersen
,
H. C.
,
2010
, “
Development and Implementation of an Advanced Power Management Algorithm for Electronic Load Sensing on a Telehandler
,”
Fluid Power and Motion Control, pp. 537–550.
90.
Jansson
,
A.
, and
Palmberg
,
J.-O.
,
1990
, “
Separate Controls of Meter-In and Meter-Out Orifices in Mobile Hydraulic Systems
,”
SAE Trans. J. Commercial Veh.
,
99
(
2
), pp.
377
383
.10.4271/901583
91.
Eriksson
,
B.
,
Larsson
,
J.
, and
Palmberg
,
J.-O.
,
2006
, “
Study on Individual Pressure Control in Energy Efficient Cylinder Drives
,”
Fourth FPNI Ph.D. Symposium
,
Sarasota, FL
, June
13
17
.http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A439&dswid=-5739
92.
Benevelli
,
A.
,
Zardin
,
B.
, and
Borghi
,
M.
,
2012
, “
Independent Metering Architectures for Agricultural Tractors Auxiliary Utilities
,”
Seventh FPNI Ph.D. Symposium on Fluid Power
,
Reggio Emilia, Italy
, June 27–30.
93.
Yuan
,
Q. H.
, and
Lew
,
J. Y.
,
2005
, “
Modeling and Control of Two Stage Twin Spool Servo-Valve for Energy-Saving
,”
American Control Conference
,
Portland, OR
, June
8
10
.10.1109/ACC.2005.1470666
94.
Eriksson
,
B.
, and
Palmberg
,
J.-O.
,
2011
, “
Individual Metering Fluid Power Systems: Challenges and Opportunities
,”
Proc. Inst. Mech. Eng. Part I
,
225
(
3
), pp.
196
211
.10.1243/09596518JSCE1111
95.
Djurovic
,
M.
,
Helduser
,
S.
, and
Keuper
,
G.
,
2004
, “
Neue Lösungen Zum Elektrohydraulischen Load-Sensing
,”
Fourth International Fluid Power Conference
,
Dresden, Germany
, Mar.
25
26
.
96.
Finzel
,
R.
, and
Helduser
,
S.
,
2008
, “
Energy-Efficient Electro-Hydraulic Control Systems for Mobile Machinery/Flow Matching
,”
Sixth International Fluid Power Conference
,
Dresden, Germany
, Mar. 31–Apr. 2.
97.
Cheng
,
M.
,
Xu
,
B.
, and
Yang
,
H.
,
2014
, “
Efficiency Improvement for Electrohydraulic Flow Sharing Systems
,”
Ninth International Fluid Power Conference
,
Aachen, Germany
.
98.
Scherer
,
M.
,
Geimer
,
M.
, and
Weiss
,
B.
,
2013
, “
Contribution on Control Strategies of Flow-on-Demand Hydraulic Circuits
,”
Proceedings from the 13th Scandinavian International Conference on Fluid Power
,
Linköping, Sweden
, June 3–5, pp.
531
540
.https://www.researchgate.net/publication/257821006_Contribution_on_Control_Strategies_of_Flow-On-Demand_Hydraulic_Circuits
99.
Mettälä
,
K.
,
Djurovic
,
M.
,
Keuper
,
G.
, and
Stachnik
,
P.
,
2007
, “
Intelligent Oil Flow Management With EFM: The Potentials of Electrohydraulic Flow Matching in Tractor Hydraulics
,”
Tenth Scandinavian International Conference on Fluid Power
,
Tampere, Finland
, May
21
23
.
100.
Fedde
,
T.
, and
Harms
,
H.-H.
,
2006
, “
An Adaptive Hydraulic System for Mobile Applications
,”
Fifth International Fluid Power Conference
,
Dresden, Germany
, Mar.
20
22
.
101.
Eriksson
,
B.
, and
Palmberg
,
J.-O.
,
2010
, “
How to Handle Auxiliary Functions in Energy Efficient, Single Pump, Flow Sharing Mobile Systems
,”
Seventh International Fluid Power Conference
,
Aachen, Germany
, Mar.
22
24
.
102.
Bedotti
,
A.
,
Pastori
,
M.
, and
Casoli
,
P.
,
2018
, “
Modelling and Energy Comparison of System Layouts for a Hydraulic Excavator
,”
Energy Procedia
,
148
, pp.
26
33
.10.1016/j.egypro.2018.08.015
103.
Finzel
,
R.
,
Helduser
,
S.
, and
Jang
,
D.
,
2010
, “
Electro-Hydraulic Dual-Circuit System to Improve the Energy Efficiency of Mobile Machines
,”
Seventh International Fluid Power Conference
,
Dresden, Germany
, Mar.
22
24
.
104.
Nielsen
,
B.
,
2005
, “
Controller Development for a Separate Meter-In Separate Meter-Out Fluid Power Valve for Mobile Applications Controller Development for a Separate Meter-In Separate Meter-Out Fluid Power Valve for Mobile Applications
,” Ph.D. dissertation, Aalborg University, Aalborg East, Denmark.
105.
Lübbert
,
J. A.
,
Sitte
,
J.
, and
Weber
,
2016
, “
Pressure Compensator Control—A Novel Independent Metering Architecture
,”
Tenth International Fluid Power Conference
,
Dresden, Germany
, Mar.
8
10
.https://www.researchgate.net/publication/310144469_Pressure_compensator_control_-_a_novel_independent_metering_architecture
106.
Axin
,
M.
,
Eriksson
,
B.
, and
Krus
,
P.
,
2016
, “
A Flexible Working Hydraulic System for Mobile Machines
,”
Int. J. Fluid Power
,
17
(
2
), pp.
79
89
.10.1080/14399776.2016.1141635
107.
Schulte
,
P. E.
,
2015
, “
Split Pump Intelligent Flow Control Architecture: Application on a Wheel Loader
,” Parker Hannifin Corporation Global Mobile Systems, Elk Grove Village, IL.
108.
Altare
,
G.
,
Lovuolo
,
F.
,
Nervegna
,
N.
, and
Rundo
,
M.
,
2012
, “
Coupled Simulation of a Telehandler Forks Handling Hydraulics
,”
Int. J. Fluid Power
,
13
(
2
), pp.
15
28
.10.1080/14399776.2012.10781050
109.
Ritelli
,
G. F.
, and
Vacca
,
A.
,
2013
, “
Energetic and Dynamic Impact of Counterbalance Valves in Fluid Power Machines
,”
Energy Convers. Manage.
,
76
, pp.
701
–7
11
.10.1016/j.enconman.2013.08.021
You do not currently have access to this content.