Abstract

Resonance is known to reduce the input energy requirements of various actuator systems. The favorable effects of resonance, however, are limited to a narrow frequency range. To overcome this limitation, we describe a general framework for using discrete units of inertia that can be activated in a binary sense to move a resonant frequency across a desired frequency range. We also enumerate the generalized physical cases in which actuators can energetically benefit from resonance. We develop closed-form optimal results for the idealized case of two binary additive inertial units and extend this to a general optimization scheme for higher numbers of units that introduce parasitic friction and added stiffness. We illustrate the concept of binary tuning with a representative linear translational system powered by a voice coil motor (VCM). The experimental results show good agreement with the intended theoretical design and show the general utility of the binary additive inertia approach.

References

1.
Snyder
,
K. L.
, and
Farley
,
C. T.
,
2011
, “
Energetically Optimal Stride Frequencyin Running: The Effects of Incline and Decline
,”
J. Exp. Biol.
,
214
(
12
), pp.
2089
2095
.10.1242/jeb.053157
2.
Lin
,
C.-Y.
,
Shiu
,
S.-J.
,
Yang
,
Z.-H.
, and
Chen
,
R.-S.
,
2017
, “
Design and Swing Strategy of a Bio-Inspired Robot Capable of Transverse Ricochetal Brachiation
,” IEEE International Conference on Mechatronics and Automation (
ICMA
), Takamatsu, Japan, Aug. 6–9, pp.
943
948
.10.1109/ICMA.2017.8015943
3.
Hollyday
,
J. S.
,
1971
, “
Resonant Pump Using Flat Disc Springs
,” U.S. Patent No. 3,572,980.
4.
Seale
,
J. B.
,
1998
, “
Resonant System to Pump Liquids, Measure Volume, and Detect Bubbles
,” U.S. Patent No. 5,769,608.
5.
Galliou
,
S.
,
Goryachev
,
M.
,
Abbe
,
P.
,
Vacheret
,
X.
,
Tobar
,
M. E.
, and
Bourquin
,
R.
,
2016
, “
Quality Factor Measurements of Various Types of Quartz Crystal Resonators Operating Near4 K
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
63
(
7
), pp.
975
980
.10.1109/TUFFC.2015.2508812
6.
Abdolvand
,
R.
,
Bahreyni
,
B.
,
Lee
,
J.
, and
Nabki
,
F.
,
2016
, “
Micromachined Resonators: A Review
,”
Micromachines
,
7
(
9
), p.
160
.10.3390/mi7090160
7.
Leïchlé
,
T. C.
,
Arx
,
M. V.
,
Reiman
,
S.
,
Zana
,
I.
,
Ye
,
W.
, and
Allen
,
M. G.
,
2004
, “
A Low-Power Resonant Micromachined Compass
,”
J. Micromech. Microeng.
,
14
(
4
), p.
462
.10.1088/0960-1317/14/4/005
8.
Geesey
,
B. A.
,
Wetherton
,
B. A.
,
Bajaj
,
N.
, and
Rhoads
,
J. F.
,
2017
, “
Shaping the Frequency Response of Electromechanical Resonators Using a Signal Interference Control Topology
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
3
), p.
031011
.10.1115/1.4034948
9.
Chen
,
Y.-D.
, and
Liu
,
C.-H.
,
2017
, “
Rotationally Tunable Frequency Selective Surfaces for Large Areas Via Linkage Mechanisms
,”
IEEE
International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, San Diego, CA, July 9–14, pp.
265
266
.10.1109/APUSNCURSINRSM.2017.8072175
10.
Birdsong
,
C.
, and
Radcliffe
,
C. J.
,
2001
, “
An Electronically Tunable Resonator for Noise Control
,”
SAE
Paper No. 2001-01-1615.10.4271/2001-01-1615
11.
Mercorelli
,
P.
, and
Werner
,
N.
,
2017
, “
An Adaptive Resonance Regulator Design for Motion Control of Intake Valves in Camless Engine Systems
,”
IEEE Trans. Ind. Electron.
,
64
(
4
), pp.
3413
3422
.10.1109/TIE.2016.2606091
12.
Wu
,
X.
,
Lin
,
J.
,
Kato
,
S.
,
Zhang
,
K.
,
Ren
,
T.
, and
Liu
,
L.
,
2008
, “
A Frequency Adjustable Vibration Energy Harvester
,”
Proceedings of Power MEMS
, Sendai, Japan, pp.
245
248
.
13.
Fang
,
H.
, and
Jin
,
L.
,
2019
, “
Investigation on Resonance Response of Mass-Adjustable Float in Wave Energy Conversion System
,”
Energy Procedia
,
158
, pp.
315
320
.10.1016/j.egypro.2019.01.095
14.
Lu
,
L.-J.
, and
Hedtke
,
R.
,
2010
, “
Adjustable Resonance Frequency Vibration Power Harvester
,” U.S. Patent No. 7,812,466.
15.
Pinrod
,
V.
,
Ying
,
R.
,
Ou
,
C.
,
Ruyack
,
A.
,
Davaji
,
B.
,
Molnar
,
A.
, and
Lal
,
A.
,
2018
, “
Zero Power, Tunable Resonant Microphone With Nanowatt Classifier for Wake-Up Sensing
,”
IEEE Sensors
, New Delhi, India, Oct. 28–31, pp.
1
4
.10.1109/ICSENS.2018.8589792
16.
Bouchaala
,
A.
,
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2016
, “
Frequency Shifts of Micro and Nano Cantilever Beam Resonators Dueto Added Masses
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
9
), p.
091002
.10.1115/1.4033075
17.
Adams
,
S. G.
,
Bertsch
,
F. M.
,
Shaw
,
K. A.
,
Hartwell
,
P. G.
,
Moon
,
F. C.
, and
MacDonald
,
N. C.
,
1998
, “
Capacitance Based Tunable Resonators
,”
J. Micromech. Microeng.
,
8
(
1
), p.
15
.10.1088/0960-1317/8/1/003
18.
Leland
,
E. S.
, and
Wright
,
P. K.
,
2006
, “
Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload
,”
Smart Mater. Struct.
,
15
(
5
), p.
1413
.10.1088/0964-1726/15/5/030
19.
Peters
,
C.
,
Maurath
,
D.
,
Schock
,
W.
, and
Manoli
,
Y.
,
2008
, “
Novel Electrically Tunable Mechanical Resonator for Energy Harvesting
,”
Proceedings of Power MEMS
, Sendai, Japan, Nov. 9–12, pp.
253
256
.https://www.researchgate.net/publication/268297064_Novel_electrically_tunable_mechanical_resonator_for_energy_harvesting
20.
Challa
,
V. R.
,
Prasad
,
M. G.
,
Shi
,
Y.
, and
Fisher
,
F. T.
,
2008
, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
17
(
1
), p.
015035
.10.1088/0964-1726/17/01/015035
21.
Wischke
,
M.
,
Masur
,
M.
,
Goldschmidtboeing
,
F.
, and
Woias
,
P.
,
2010
, “
Electromagnetic Vibration Harvester With Piezoelectrically Tunable Resonance Frequency
,”
J. Micromech. Microeng.
,
20
(
3
), p.
035025
.10.1088/0960-1317/20/3/035025
22.
Eichhorn
,
C.
,
Tchagsim
,
R.
,
Wilhelm
,
N.
, and
Woias
,
P.
,
2011
, “
A Smart and Self-Sufficient Frequency Tunable Vibration Energy Harvester
,”
J. Micromech. Microeng.
,
21
(
10
), p.
104003
.10.1088/0960-1317/21/10/104003
23.
Liu
,
T.
, and
Livemore
,
C.
,
2012
, “
Passively Tuning Harvesting Beam Length to Achieve Very High Harvesting Bandwidth in Rotating Applications
,”
Proceedings of Power MEMS
, Atlanta, Georgia, Dec. 2–5, pp.
492
495
.http://cap.ee.ic.ac.uk/~pdm97/powermems/2012/poster/P-064.pdf
24.
Li
,
M.
,
Wen
,
Y.
,
Li
,
P.
, and
Yang
,
J.
,
2013
, “
A Resonant Frequency Self-Tunable Rotation Energy Harvester Based on Magnetoelectric Transducer
,”
Sens. Actuators, A
,
194
, pp.
16
24
.10.1016/j.sna.2013.01.034
25.
Hoffmann
,
D.
,
Willmann
,
A.
,
Hehn
,
T.
,
Folkmer
,
B.
, and
Manoli
,
Y.
,
2016
, “
A Self-Adaptive Energy Harvesting System
,”
Smart Mater. Struct.
,
25
(
3
), p.
035013
.10.1088/0964-1726/25/3/035013
26.
Madinei
,
H.
,
Khodaparast
,
H. H.
,
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2016
, “
Design of MEMS Piezoelectric Harvesters With Electrostatically Adjustable Resonance Frequency
,”
Mech. Syst. Signal Process.
,
81
, pp.
360
374
.10.1016/j.ymssp.2016.03.023
27.
Yildirim
,
T.
,
Ghayesh
,
M. H.
,
Li
,
W.
, and
Alici
,
G.
,
2017
, “
A Nonlinearly Broadband Tuneable Energy Harvester
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
1
), p.
011008
.10.1115/1.4034321
28.
Wang
,
Y.-J.
,
Chuang
,
T.-Y.
, and
Lee
,
C.
,
2019
, “
Resonant Frequency Self-Tunable Piezoelectric Cantilevers for Energy Harvesting and Disturbing Torque Absorbing
,”
Sens. Actuators, A
,
285
, pp.
25
34
.10.1016/j.sna.2018.10.043
29.
Secord
,
T. W.
, and
Audi
,
M. C.
,
2019
, “
A Tunable Resonance Cantilever for Cardiac Energy Harvesting
,”
Cardiovasc. Eng. Technol.
,
10
(
2
), pp.
380
393
.10.1007/s13239-019-00402-9
30.
Brennan
,
M. J.
,
1998
, “
Actuators for Active Vibration Control-Tunable Resonant Devices
,”
Proceedings of 4th Euro Conference on Smart Structures and Materials
, pp.
41
48
.
31.
Shen
,
X.
,
Chen
,
Y.
,
Wang
,
J.
,
Li
,
J.
,
Chang
,
L.
, and
Sun
,
Y.
,
2019
, “
Design, Experiment and Verification of Resonant Frequency-Tunable Vibration Isolator Based on Annular Metal Rubbersand Shape Memory Alloy Actuators
,”
J. Vib. Eng. Technol.
,
7
(
3
), pp.
277
289
.10.1007/s42417-019-00109-0
32.
Zhao
,
J.
,
Li
,
X.
,
Wang
,
W.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Liu
,
Y.
,
2019
, “
Membrane-Type Acoustic Metamaterials With Tunable Frequency by a Compact Magnet
,”
J. Acoust. Soc. Am.
,
145
(
5
), pp.
EL400
EL404
.10.1121/1.5107431
33.
Adams
,
S. G.
,
Bertsch
,
F. M.
,
Shaw
,
K. A.
,
Hartwell
,
P. G.
,
MacDonald
,
N. C.
, and
Moon
,
F. C.
,
1995
, “
Capacitance Based Tunable Micromechanical Resonators
,”
Proceedings of the International Solid-State Sensors and Actuators Conference-TRANSDUCERS'95
, Vol.
1
, Stockholm, Sweden, pp.
438
441
.
34.
Zine-El-Abidine
,
I.
, and
Yang
,
P.
,
2009
, “
A Tunable Mechanical Resonator
,”
J. Micromech. Microeng.
,
19
(
12
), p.
125004
.10.1088/0960-1317/19/12/125004
35.
Secord
,
T. W.
, and
Asada
,
H. H.
,
2010
, “
A Variable Stiffness PZT Actuator Having Tunable Resonant Frequencies
,”
IEEE Trans. Rob.
,
26
(
6
), pp.
993
1005
.10.1109/TRO.2010.2076850
36.
Kawai
,
Y.
,
Kim
,
J.-H.
,
Inomata
,
N.
, and
Ono
,
T.
,
2016
, “
Parametrically Actuated Resonant Micromirror Using Stiffness Tunable Torsional Springs
,”
Sens. Mater
,
28
, pp.
131
139
.10.18494/SAM.2016.1163
37.
Morrison
,
J.
,
Imboden
,
M.
, and
Bishop
,
D. J.
,
2017
, “
Tuning the Resonance Frequencies and Mode Shapes in a Large Range Multi-Degree of Freedom Micromirror
,”
Opt. Express
,
25
(
7
), pp.
7895
7906
.10.1364/OE.25.007895
38.
Li
,
Y.
,
Oh
,
I.
,
Chen
,
J.
, and
Hu
,
Y.
,
2018
, “
A New Design of Dielectric Elastomer Membrane Resonator With Tunable Resonant Frequencies and Mode Shapes
,”
Smart Mater. Struct.
,
27
(
6
), p.
065029
.10.1088/1361-665X/aab996
39.
Verstraten
,
T.
,
Beckerle
,
P.
,
Furnémont
,
R.
,
Mathijssen
,
G.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2016
, “
Series and Parallel Elastic Actuation: Impact of Natural Dynamics on Power and Energy Consumption
,”
Mech. Mach. Theory
,
102
, pp.
232
246
.10.1016/j.mechmachtheory.2016.04.004
40.
Ju
,
F.
,
Yun
,
Y.
,
Zhang
,
Z.
,
Wang
,
Y.
,
Wang
,
Y.
,
Zhang
,
L.
, and
Chen
,
B.
,
2018
, “
A Variable-Impedance Piezoelectric Tactile Sensor With Tunable Sensing Performance for Tissue Hardness Sensing in Robotic Tumor Palpation
,”
Smart Mater. Struct.
,
27
(
11
), p.
115039
.10.1088/1361-665X/aae54f
41.
Sviličić
,
B.
,
Mastropaolo
,
E.
,
Zhang
,
R.
, and
Cheung
,
R.
,
2015
, “
Tunable MEMS Cantilever Resonators Electrothermally Actuated and Piezoelectrically Sensed
,”
Microelectron. Eng.
,
145
, pp.
38
42
.10.1016/j.mee.2015.02.049
42.
Secord
,
T.
,
2018
, “
A High Efficiency Tunable Resonance Pump for Biomedical Applications
,”
ASME
Paper No. DMD2018-6917.10.1115/DMD2018-6917
43.
Schultz
,
J.
,
Mathijssen
,
G.
,
Vanderborght
,
B.
, and
Bicchi
,
A.
,
2015
, “
A Selective Recruitment Strategy for Exploiting Muscle-Like Actuator Impedance Properties
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
2231
2237
.10.1109/IROS.2015.7353676
44.
Paynter
,
H. M.
,
1961
,
Analysis and Design of Engineering Systems
,
MIT Press
,
Cambridge, MA
.
45.
Borutzky
,
W.
,
2011
,
Bond Graph Modelling of Engineering Systems
, Vol.
103
,
Springer
,
New York
.
46.
Koerner
,
L. J.
, and
Secord
,
T. W.
,
2019
, “
An Embedded Electrical Impedance Analyzer Based on the AD5933 for the Determination of Voice Coil Motor Mechanical Properties
,”
Sens. Actuators, A
,
295
, pp.
99
112
.10.1016/j.sna.2019.05.037
You do not currently have access to this content.