Abstract

In contrast to the single-light detection and ranging (LiDAR) system, multi-LiDAR sensors may improve the environmental perception for autonomous vehicles. However, an elaborated guideline of multi-LiDAR data processing is absent in the existing literature. This paper presents a systematic solution for multi-LiDAR data processing, which orderly includes calibration, filtering, clustering, and classification. As the accuracy of obstacle detection is fundamentally determined by noise filtering and object clustering, this paper proposes a novel filtering algorithm and an improved clustering method within the multi-LiDAR framework. To be specific, the applied filtering approach is based on occupancy rates (ORs) of sampling points. Besides, ORs are derived from the sparse “feature seeds” in each searching space. For clustering, the density-based spatial clustering of applications with noise (DBSCAN) is improved with an adaptive searching (AS) algorithm for higher detection accuracy. Besides, more robust and accurate obstacle detection can be achieved by combining AS-DBSCAN with the proposed OR-based filtering. An indoor perception test and an on-road test were conducted on a fully instrumented autonomous hybrid electric vehicle. Experimental results have verified the effectiveness of the proposed algorithms, which facilitate a reliable and applicable solution for obstacle detection.

References

1.
Zhao
,
J.
,
Xu
,
H.
,
Liu
,
H.
,
Wu
,
J.
,
Zheng
,
Y.
, and
Wu
,
D.
,
2019
, “
Detection and Tracking of Pedestrians and Vehicles Using Roadside LiDAR Sensors
,”
Transp. Res. Part C Emerging Technol.
,
100
, pp.
68
87
.10.1016/j.trc.2019.01.007
2.
Zhang
,
Y.
,
Wang
,
J.
,
Wang
,
X.
, and
Dolan
,
J. M.
,
2018
, “
Road-Segmentation-Based Curb Detection Method for Self-Driving Via a 3D-LiDAR Sensor
,”
IEEE Trans. Intell. Transport. Syst.
,
19
(
12
), pp.
3981
3991
.10.1109/TITS.2018.2789462
3.
Feng
,
D.
,
Rosenbaum
,
L.
, and
Dietmayer
,
K.
,
2018
, “
Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network for LiDAR 3D Vehicle Detection
,”
21st International Conference on Intelligent Transportation Systems
(
ITSC
), Maui, HI, Nov. 4–7, pp.
3266
3273
.https://www.researchgate.net/publication/324558364_Towards_Safe_Autonomous_Driving_Capture_Uncertainty_in_the_Deep_Neural_Network_For_Lidar_3D_Vehicle_Detection
4.
Asvadi
,
A.
,
Premebida
,
C.
,
Peixoto
,
P.
, and
Nunes
,
U.
,
2016
, “
3D LiDAR-Based Static and Moving Obstacle Detection in Driving Environments: An Approach Based on Voxels and Multi-Region Ground Planes
,”
Rob. Auton. Syst.
,
83
, pp.
299
311
.10.1016/j.robot.2016.06.007
5.
Hata
,
A.
, and
Wolf
,
D.
,
2016
, “
Feature Detection for Vehicle Localization in Urban Environments Using a Multilayer LiDAR
,”
IEEE Trans. Intell. Transp. Syst.
,
17
(
2
), pp.
420
429
.10.1109/TITS.2015.2477817
6.
Waymo
,
L. L. C.
,
2017
, “
On the Road to Fully Self-Driving
,” Waymo Safety Report, pp. 1–43, accessed Nov. 7, 2019, https://storage.googleapis.com/sdc-prod/v1/safety-report/waymo-safety-report-2017.pdf
7.
Crowe
,
S.
,
2018
, “
How Uber Self-Driving Cars See the World
,” The RobotReport, accessed Mar. 19, 2018, https://www.therobotreport.com/how-uber-self-driving-cars-see-world/
8.
Li
,
Q.
,
Chen
,
L.
,
Li
,
M.
,
Shaw
,
S. L.
, and
Nüchter
,
A.
,
2014
, “
A Sensor-Fusion Drivable-Region and Lane-Detection System for Autonomous Vehicle Navigation in Challenging Road Scenarios
,”
IEEE Trans. Veh. Technol.
,
63
(
2
), pp.
540
555
.10.1109/TVT.2013.2281199
9.
Hernandez-Aceituno
,
J.
,
Arnay
,
R.
,
Toledo
,
J.
, and
Acosta
,
L.
,
2016
, “
Using Kinect on an Autonomous Vehicle for Outdoors Obstacle Detection
,”
IEEE Sens. J.
,
16
(
10
), pp.
3603
3610
.10.1109/JSEN.2016.2531122
10.
Xie
,
D.
,
Xu
,
Y.
, and
Wang
,
R.
,
2019
, “
Obstacle Detection and Tracking Method for Autonomous Vehicle Based on Three-Dimensional LiDAR
,”
Int. J. Adv. Rob. Syst.
,
16
(
2
), pp.
1
13
. https://www.researchgate.net/publication/331935965_Obstacle_detection_and_tracking_method_for_autonomous_vehicle_based_on_three-dimensional_LiDAR
11.
Duan
,
J.
,
Shi
,
L.
,
Zheng
,
K.
, and
Liu
,
D.
,
2014
, “
Road and Obstacle Detection Research Based on Four-Line Ladar
,”
IEEE
International Conference on Mechatronics and Automation, Tianjin, China, Aug. 3–6, pp.
1728
1733
.10.1109/ICMA.2014.6885961
12.
Allodi
,
M.
,
Broggi
,
A.
,
Giaquinto
,
D.
,
Patander
,
M.
, and
Prioletti
,
A.
,
2016
, “
Machine Learning in Tracking Associations With Stereo Vision and LiDAR Observations for an Autonomous Vehicle
,”
IEEE Intelligent Vehicles Symposium
(
IV
), Gothenburg, June 19–22, pp.
648
653
. 10.1109/IVS.2016.7535456
13.
Pereira
,
S. J.
,
Altmann
,
C. T.
, and
Ferris
,
J. B.
,
2017
, “
Theoretical Development of a Modified RANSAC Algorithm for Identifying Outliers in Road Surface Data
,”
ASME
Paper No. DSCC2017-5257.10.1115/DSCC2017-5257
14.
Du
,
X.
,
Ang
,
M. H.
,
Karaman
,
S.
, and
Rus
,
D.
,
2018
, “
A General Pipeline for 3D Detection of Vehicles
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Brisbane, QLD, May 21–25, pp.
3194
3200
.
15.
Wu
,
J.
,
Xu
,
H.
, and
Zhao
,
J.
,
2018
, “
Automatic Lane Identification Using the Roadside LiDAR Sensors
,”
IEEE Intell. Transp. Syst. Mag.
(epub).10.1109/MITS.2018.2876559
16.
Varela-González
,
M.
,
González-Jorge
,
H.
,
Riveiro
,
B.
, and
Arias
,
P.
,
2014
, “
Automatic Filtering of Vehicles from Mobile Lidar Datasets
,”
Measurement
,
53
, pp.
215
223
.10.1016/j.measurement.2014.03.033
17.
Magnier
,
V.
,
Gruyer
,
D.
, and
Godelle
,
J.
,
2017
, “
Automotive LiDAR Objects Detection and Classification Algorithm Using the Belief Theory
,”
IEEE Intelligent Vehicles Symposium
(
IV
), Los Angeles, CA, June 11–14, pp.
746
751
.10.1109/IVS.2017.7995806
18.
Huang
,
J.
,
Demir
,
M.
,
Lian
,
T.
, and
Fujimura
,
K.
,
2019
, “
An Online Multi-LiDAR Dynamic Occupancy Mapping Method
,”
IEEE Intelligent Vehicles Symposium
(
IV
), Paris, France, June 9–12, pp.
517
522
. 10.1109/IVS.2019.8814006
19.
Dai
,
K.
,
Wang
,
Y.
,
Ji
,
Q.
,
Du
,
H.
, and
Yin
,
C.
,
2019
, “
Multiple Vehicle Tracking Based on Labeled Multiple Bernoulli Filter Using Pre-Clustered Laser Range Finder Data
,”
IEEE Trans. Veh. Technol
. (epub).10.1109/TVT.2019.2938253
20.
Yin
,
H.
,
Wang
,
Y.
,
Ding
,
X.
,
Tang
,
L.
,
Huang
,
S.
, and
Xiong
,
R.
,
2019
, “
3D LiDAR Global Localization Using Siamese Neural Network
,”
IEEE Trans. Intell. Transp.
(epub).10.1109/TITS.2019.2905046
21.
Wu
,
J.
,
Xu
,
H.
, and
Zheng
,
J.
,
2017
, “
Automatic Background Filtering and Lane Identification With Roadside LiDAR Data
,”
International Conference on IEEE Intelligent Transportation Systems
(
ITSC
), Yokohama, Japan, Oct. 16–19, pp.
1
6
.10.1109/ITSC.2017.8317723
22.
Kim
,
J.
, and
Mahmassani
,
H. S.
,
2015
, “
Spatial and Temporal Characterization of Travel Patterns in a Traffic Network Using Vehicle Trajectories
,”
Transp. Res. Procedia
, 9, pp.
164
184
.10.1016/j.trpro.2015.07.010
23.
Zhang
,
Z.
,
Zheng
,
J.
,
Xu
,
H.
, and
Wang
,
X.
,
2019
, “
Vehicle Detection and Tracking in Complex Traffic Circumstances with Roadside Lidar
,”
Transp. Res. Rec.: J. Transp. Res. Board
,
2673
(
9
), pp.
62
71
.10.1177/0361198119844457
24.
Wang
,
C.
,
Ji
,
M.
,
Wang
,
J.
,
Wen
,
W.
,
Li
,
T.
, and
Sun
,
Y.
,
2019
, “
An Improved DBSCAN Method for LiDAR Data Segmentation With Automatic Eps Estimation
,”
Sensors
,
19
(
1
), p.
172
.10.3390/s19010172
25.
Wen
,
M.
,
Cho
,
S.
,
Chae
,
J.
,
Sung
,
Y.
, and
Cho
,
K.
,
2018
, “
Range Image-Based Density-Based Spatial Clustering of Application With Noise Clustering Method of Three-Dimensional Point Clouds
,”
Int. J. Adv. Rob. Syst.
,
15
(
2
), pp.
1
9
.10.1177/1729881418762302
26.
Quist
,
E. B.
,
Niedfeldt
,
P. C.
, and
Beard
,
R. W.
,
2016
, “
Radar Odometry With Recursive-RANSAC
,”
IEEE Trans. Aerosp. Electron. Syst.
,
52
(
4
), pp.
1618
1630
.10.1109/TAES.2016.140829
27.
Fremont
,
V.
, and
Bonnifait
,
P.
,
2008
, “
Extrinsic Calibration Between a Multi-Layer LiDAR and a Camera
,”
IEEE
International Conference on Multisensor Fusion and Integration for Intelligent Systems
, Seoul, South Korea, Aug. 20–22, pp.
214
219
.10.1109/MFI.2008.4648067
28.
Lee
,
J.-S.
,
Jo
,
J.-H.
, and
Park
,
T.-H.
, “
Segmentation of Vehicles and Roads by a Low-Channel Lidar
,”
IEEE Trans. Intell. Transp. Syst.
,
20
(
11
), pp.
4251
4256
.10.1109/TITS.2019.2903529
29.
Yan
,
Z.
,
Duckett
,
T.
, and
Bellotto
,
N.
,
2017
, “
Online Learning for Human Classification in 3d LiDAR-Based Tracking
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vancouver, BC, Sept. 24–28, pp.
864
871
.10.1109/IROS.2017.8202247
30.
Wang
,
G.
,
Wu
,
J.
,
He
,
R.
, and
Yang
,
S.
,
2019
, “
A Point Cloud Based Robust Road Curb Detection and Tracking Method
,”
IEEE Access
,
7
, pp.
24611
24625
.10.1109/ACCESS.2019.2898689
31.
Cheng
,
M.
,
Zhang
,
Y.
,
Su
,
Y.
,
Alvarez
,
J. M.
, and
Kong
,
H.
,
2018
, “
Curb Detection for Road and Sidewalk Detection
,”
IEEE Trans. Veh. Technol.
,
67
(
11
), pp.
10330
10342
.10.1109/TVT.2018.2865836
You do not currently have access to this content.