Abstract

Based on the previously developed fixed-displacement asymmetric axial piston pump, a variable displacement asymmetric axial piston pump (VDAAPP) with three independent suction/delivery ports is proposed. A basic linear model of VDAAPP is established to get open-loop bode diagram. Based on open-loop Bode diagram features and design requirements, P-controller is determined for VDAAPP. Then VDAAPP's performance is investigated by advanced modeling environment for performing simulations of engineering systems (AMESim) and automatic dynamic analysis of mechanical systems (ADAMS) joint simulation, and some key design parameters are obtained. Next, a VDAAPP prototype with a maximum displacement of 40 cc/rev is designed and manufactured, ratio of flow rates at ports A, B and T is 1:0.6:0.4. Due to hard limitations of the test bench, the performance only under the conditions of the opposite passive loads is tested. Preliminary test results indicate that VDAAPP prototype works normally and meets the design requirements for flow ratio, and the maximum rise time of the test pressure is about 0.32 s. However, due to special design of VDAAPP valve plate, the swash plate torque severely limits system dynamic response. Therefore, an improved swashplate control system based on asymmetric-valve-controlled asymmetric-piston scheme is presented as well, it is found to be an effective way to suppress the negative impact of swash plate torque on system dynamic performance. This provides a direction for the optimization of the swashplate control system for asymmetric axial piston pumps in the future.

References

1.
Sprockhoff
,
V.
,
1979
, “
Research on the System Performance of Servo Pump Controlled Cylinder
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
2.
Maré
,
J. C.
, and
Fu
,
J.
,
2017
,
Aerospace Actuators 2: Signal-by-Wire and Power-by-Wire
,
Wiley
,
Hoboken, NJ
.
3.
Huang
,
J.
,
Dong
,
Z.
,
Quan
,
L.
,
Jin
,
Z.
,
Lan
,
Y.
, and
Wang
,
Y.
,
2015
, “
Development of a Dual Displacement Controlled Circuit for Hydraulic Shovel Swing Motion
,”
Autom. Constr.
,
57
, pp.
166
174
.10.1016/j.autcon.2015.06.006
4.
Quan
,
Z.
,
Quan
,
L.
, and
Zhang
,
J.
,
2014
, “
Review of Energy Efficient Direct Pump Controlled Cylinder Electro-Hydraulic Technology
,”
Renew Sust. Energy Rev.
,
35
, pp.
336
346
.10.1016/j.rser.2014.04.036
5.
Helduser
,
S.
,
1999
, “
Electric-Hydrostatic Drive-an Innovative Energy Saving Power and Motion Control System
,”
Proc. Inst. Mech. Eng., Part I
,
213
(
5
), pp.
427
437
.10.1243/0959651991540250
6.
Lodewyks
,
J.
,
1994
, “
Differential Cylinder in a Closed Hydrostatic Transmission
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
7.
Hewett
,
A. J.
,
1994
, “Hydraulic Circuit Flow Control,” US Patent No. 5329767.
8.
Rahmfeld
,
R.
,
2002
, “
Development and Control of Energy Saving Hydraulic Servo Drives for Mobile Systems
,” Ph.D. thesis, Technischen Universitat Hamburg, Harburg, Germany.
9.
Williamson
,
C.
, and
Ivantysynova
,
M.
,
2008
, “
Pump Mode Prediction for Four-Quadrant Velocity Control of Valveless Hydraulic Actuators
,”
Seventh JFPS International Symposium on Fluid Power
, Vol.
2
, Toyama, Japan, Sept. 5–18, pp.
323
328
.https://pdfs.semanticscholar.org/b055/95fd653dcaff415e99780cf232c727759391.pdf
10.
Wang
,
L.
, and
Book
,
W. J.
,
2013
, “
Using Leakage to Stabilize a Hydraulic Circuit for Pump Controlled Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
6
), p.
061007
.10.1115/1.4024900
11.
Achten
,
P. A. J.
,
Fu
,
Z.
, and
Vael
,
G. E. M.
,
1997
, “
Transforming Future Hydraulics: A New Design of a Hydraulic Transformer
,”
Fifth Scandinavian International Conference on Fluid Power (SICFP'97)
, Linköping, Sweden, May 28-30, p.
287 ev
.
12.
Quan
,
L.
,
2008
, “
Current State, Problems and the Innovative Solution of Electro-Hydraulic Technology of Pump Controlled Cylinder
,”
J. Mech. Eng.
,
44
(
11
), pp.
87
92
.10.3901/JME.2008.11.087
13.
Huang
,
J.
,
Zhao
,
H.
,
Quan
,
L.
, and
Zhang
,
X.
,
2014
, “
Development of an Asymmetric Axial Piston Pump for Displacement-Controlled System
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
8
), pp.
1418
1430
.10.1177/0954406213508385
14.
Zhang
,
X.
,
Quan
,
L.
,
Yang
,
Y.
,
Wang
,
C.
, and
Yao
,
L.
,
2012
, “
Output Characteristics of a Series Three-Port Axial Piston Pump
,”
Chin. J. Mech. Eng.
,
25
(
3
), pp.
498
504
.10.3901/CJME.2012.03.498
15.
Huang
,
J.
,
Quan
,
L.
, and
Zhang
,
X.
,
2014
, “
Development of a Dual-Acting Axial Piston Pump for Displacement Controlled System
,”
Proc. Inst. Mech. Eng., Part B
,
228
(
4
), pp.
606
616
.10.1177/0954405413506196
16.
Ge
,
L.
,
Quan
,
L.
,
Li
,
Y.
,
Zhang
,
X.
, and
Yang
,
J.
,
2018
, “
A Novel Hydraulic Excavator Boom Driving System With High Efficiency and Potential Energy
,”
Energy Convers. Manag.
,
166
(
1
), pp.
308
317
.10.1016/j.enconman.2018.04.046
17.
Gao
,
Y.
,
Cheng
,
J.
,
Huang
,
J.
, and
Quan
,
L.
,
2017
, “
Simulation Analysis and Experiment of Variable-Displacement Asymmetric Axial Piston Pump
,”
Appl. Sci.
,
7
(
4
), p.
328
.
18.
Dong
,
Z.
, and
Manring
,
N. D.
,
2004
, “
The Impact of Using a Secondary Swash-Plate Angle Within an Axial Piston Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
1
), pp.
65
74
.10.1115/1.1648313
19.
Wang
,
S.
,
2013
, “
Novel Piston Pressure Carryover for Dynamic Analysis and Designs of the Axial Piston Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
2
), p.
024504
.10.1115/1.4023065
20.
Manring
,
N. D.
,
2002
, “
Designing a Control and Containment Device for Cradle-Mounted, Axial-Actuated Swashplates
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
456
464
.10.1115/1.1481361
21.
Manring
,
N. D.
, and
Mehta
,
V. S.
,
2011
, “
Physical Limitations for the Bandwidth Frequency of a Pressure Controlled, Axial-Piston Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
6
), p.
061005
.10.1115/1.4004056
22.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
Hoboken, NJ
.
23.
Ji
,
M. L.
,
Park
,
S. H.
, and
Kim
,
J. S.
,
2009
, “
A Robust Control of the Pressure in a Control-Cylinder for the Variable-Displacement Axial Piston Pump
,”
Seventh Asian Control Conference
(
ASCC
2009), Hong Kong, China, Aug. 27–29, pp.
1280
1285
.https://ieeexplore.ieee.org/document/5276318
24.
Huang
,
J.
,
Dai
,
J.
,
Quan
,
L.
, and
Lan
,
Y.
,
2018
, “
Performance of Proportional Flow Valve With Pilot Pressure Drop—Spool Opening Compensation
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
1
), p.
011009
.10.1115/1.4034504
25.
Ivantysyn
,
J.
, and
Ivantysynova
,
M.
,
2001
,
Hydrostatic Pumps and Motors, Principles, Designs, Performance, Modelling, Analysis, Control and Testing
,
Academia Books International
,
New Delhi, India
.
26.
Mandal
,
N. P.
,
Saha
,
R.
,
Mookherjee
,
S.
, and
Sanyal
,
D.
,
2014
, “
Pressure Compensator Design for a Swash Plate Axial Piston Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
2
), p.
021001
.10.1115/1.4025672
27.
Wang
,
Z.
,
Wu
,
Y.
, and
Huang
,
J.
,
2019
, “
The High-Speed Tribological Performance of Port Plates in Axial Piston Pumps
,”
Chin. Hydraul. Pneumat.,
(8) pp.
27
32
.
You do not currently have access to this content.