This study investigates a passive controller for a coupled two degrees-of-freedom (DOFs) oscillator to suppress friction-induced mode-coupling instability. The primary system is acted upon by a friction force of a moving belt and static coupling of the oscillator provided with an oblique spring. The combined system, original system plus absorber, response is governed by two sets of differential equations to include contact and loss of contact between the mass and the belt. Therefore, the model accounts for two sources of nonlinearity in the system: (1) discontinuity in the friction force and (2) intermittent loss of contact. Friction coefficient and absorber orientation are used to define planar parameter space for stability analysis. For various mass ratios, the parameter space is divided into stable and unstable zones by defining stability boundaries. In general, an absorber expands the stability region and provides a significant reduction in transient response overshoot and settling time. Incorporation of the absorber also prevents mass-belt separation, thereby suppressing the belt-speed-overtake by the primary mass.

References

1.
Le Rouzic
,
J.
,
Le Bot
,
A.
,
Perret-Liaudet
,
J.
,
Guibert
,
M.
,
Rusanov
,
A.
,
Douminge
,
L.
,
Bretagnol
,
F.
, and
Mazuyer
,
D.
,
2013
, “
Friction-Induced Vibration by Stribeck's Law: Application to Wiper Blade Squeal Noise
,”
Tribol. Lett.
,
49
(
3
), pp.
563
572
.
2.
Daei
,
A. R.
,
Davoudzadeh
,
N.
, and
Filip
,
P.
,
2016
, “
Optimization of Brake Friction Materials Using Mathematical Methods and Testing
,”
SAE Int. J. Mater. Manuf.
,
9
(
1
), pp.
118
122
.
3.
Daei
,
A. R.
,
Majumdar
,
D.
, and
Filip
,
P.
,
2015
, “
Performance of Low-Metallic Cu-Free Brake Pads With Two Different Graphite Types
,”
SAE
Paper No. 2015-01-2677.
4.
Monteiro
,
H. L. S.
, and
Trindade
,
M. A.
,
2017
, “
Performance Analysis of Proportional-Integral Feedback Control for the Reduction of Stick-Slip-Induced Torsional Vibrations in Oil Well Drill strings
,”
J. Sound Vib.
,
398
, pp.
28
38
.
5.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
.
6.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.
7.
Akay
,
A.
,
2002
, “
Acoustics of Friction
,”
J. Acoust. Soc. Am.
,
111
(
4
), pp.
1525
1548
.
8.
Hoffmann
,
N.
,
Fischer
,
M.
,
Allgaier
,
R.
, and
Gaul
,
L.
,
2002
, “
A Minimal Model for Studying Properties of the Mode-Coupling Type Instability in Friction Induced Oscillations
,”
Mech. Res. Commun.
,
29
(
4
), pp.
197
205
.
9.
Hetzler
,
H.
,
Schwarzer
,
D.
, and
Seemann
,
W.
,
2007
, “
Analytical Investigation of Steady-State Stability and Hopf-Bifurcations Occurring in Sliding Friction Oscillators With Application to Low-Frequency Disc Brake Noise
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
1
), pp.
83
99
.
10.
Juel
,
J.
, and
Fidlin
,
A.
,
2003
, “
Analytical Approximations for Stick–Slip Vibration Amplitudes
,”
Int. J. Non-Linear Mech.
,
38
(
3
), pp.
389
403
.
11.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.
12.
Won
,
H. I.
, and
Chung
,
J.
,
2016
, “
Stick–Slip Vibration of an Oscillator With Damping
,”
Nonlinear Dyn.
,
86
(
1
), pp.
257
267
.
13.
Niknam
,
A.
, and
Farhang
,
K.
,
2018
, “
Vibration Instability in a Large Motion Bistable Compliant Mechanism Due to Stribeck Friction
,”
ASME J. Vib. Acoust.
,
140
(6), p. 061017.
14.
Al-Bender
,
F.
,
Symens
,
W.
,
Swevers
,
J.
, and
Van Brussel
,
H.
,
2004
, “
Theoretical Analysis of the Dynamic Behavior of Hysteresis Elements in Mechanical Systems
,”
Int. J. Non-Linear Mech.
,
39
(
10
), pp.
1721
1735
.
15.
Ruderman
,
M.
, and
Iwasaki
,
M.
,
2016
, “
On Damping Characteristics of Frictional Hysteresis in Pre-Sliding Range
,”
J. Phys.: Conf. Ser.
,
727
, p.
12014
.https://iopscience.iop.org/article/10.1088/1742-6596/727/1/012014
16.
Hoffmann
,
N.
, and
Gaul
,
L.
,
2003
, “
Effects of Damping on Mode-Coupling Instability in Friction Induced Oscillations
,”
Z. Angew. Math. Mech.
,
83
(
8
), pp.
524
534
.
17.
Hoffmann
,
N.
,
Bieser
,
S.
, and
Gaul
,
L.
,
2004
, “
Harmonic Balance and Averaging Techniques for Stick-Slip Limit-Cycle Determination in Mode-Coupling Friction Self-Excited Systems
,”
Tech. Mech.
,
24
(3–4), pp.
185
197
.http://www.ovgu.de/ifme/zeitschrift_tm/2004_Heft3_4/Hoffmann.pdf
18.
Li
,
Z.
,
Ouyang
,
H.
, and
Guan
,
Z.
,
2016
, “
Nonlinear Friction-Induced Vibration of a Slider–Belt System
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041006
.
19.
Sinou
,
J. J.
, and
Jézéquel
,
L.
,
2007
, “
Mode Coupling Instability in Friction-Induced Vibrations and Its Dependency on System Parameters Including Damping
,”
Eur. J. Mech., A
,
26
(
1
), pp.
106
122
.
20.
Niknam
,
A.
, and
Farhang
,
K.
, “
Friction-Induced Vibration Due to Mode-Coupling and Intermittent Contact Loss
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021012
.
21.
Niknam
,
A.
,
2018
, “
Vibration Instability in Frictionally Driven Elastic Mechanical System
,”
Southern Illinois University
,
Carbondale, IL
.
22.
Armstrong
,
B.
, and
Amin
,
B.
,
1996
, “
PID Control in the Presence of Static Friction: A Comparison of Algebraic and Describing Function Analysis
,”
Automatica
,
32
(
5
), pp.
679
692
.
23.
Dupont
,
P. E.
,
1994
, “
Avoiding Stick-Slip Through PD Control
,”
IEEE Trans. Autom. Control
,
39
(
5
), pp.
1094
1097
.
24.
Nath
,
J.
, and
Chatterjee
,
S.
,
2016
, “
Tangential Acceleration Feedback Control of Friction Induced Vibration
,”
J. Sound Vib.
,
377
, pp.
22
37
.
25.
Nath
,
J.
, and
Chatterjee
,
S.
,
2016
, “
Nonlinear Control of Stick-Slip Oscillations by Normal Force Modulation
,”
J. Vib. Control
,
24
(
8
), pp.
1427
1439
.
26.
Popp
,
K.
,
2005
, “
Modelling and Control of Friction-Induced Vibrations
,”
Math. Comput. Modell. Dyn. Syst.
,
11
(
3
), pp.
345
369
.
27.
Leine
,
R. I.
, and
Nijmeijer
,
H.
,
2004
,
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.