This paper details a decentralized passivity-based control (PBC) to improve the robustness of biped locomotion in the presence of gait-generating external torques and parametric errors in the biped model. Previous work demonstrated a passive output for biped systems based on a generalized energy that, when directly used for feedback control, increases the basin of attraction and convergence rate of the biped to a stable limit cycle. This paper extends the concept with a theoretical framework to address both uncertainty in the biped model and a lack of sensing hardware, by allowing the designer to neglect arbitrary states and parameters in the system. This framework also allows the control to be implemented on wearable devices, such as a lower limb exoskeleton or powered prosthesis, without needing a model of the user's dynamics. Simulations on a six-link biped model demonstrate that the proposed control scheme increases the convergence rate of the biped to a walking gait and improves the robustness to perturbations and to changes in ground slope.

References

1.
Goswami
,
A.
,
Espiau
,
B.
, and
Keramane
,
A.
,
1997
, “
Limit Cycles in a Passive Compass Gait Biped and Passivity-Mimicking Control Laws
,”
Auton. Robots
,
4
(
3
), pp.
273
286
.
2.
Gupta
,
S.
, and
Kumar
,
A.
,
2017
, “
A Brief Review of Dynamics and Control of Underactuated Biped Robots
,”
Adv. Rob.
,
31
(
12
), pp.
607
623
.
3.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
CRC Press
,
Boca Raton, FL
, p.
528
.
4.
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Sinnet
,
R. W.
, and
Ames
,
A. D.
,
2014
, “
Models, Feedback Control, and Open Problems of 3D Bipedal Robotic Walking
,”
Automatica
,
50
(
8
), pp.
1955
1988
.
5.
Sadeghian
,
H.
,
Ott
,
C.
,
Garofalo
,
G.
, and
Cheng
,
G.
,
2017
, “
Passivity-Based Control of Underactuated Biped Robots Within Hybrid Zero Dynamics Approach
,”
IEEE International Conference Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
4096
4101
.
6.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.
7.
Spong
,
M. W.
, and
Bhatia
,
G.
,
2003
, “
Further Results on Control of the Compass Gait Biped
,”
IEEE Conference on Intelligent Robots and Systems
(
IROS
), Las Vegas, NV, Oct. 27–31, pp.
1933
1938
.
8.
Bloch
,
A. M.
,
Leonard
,
N. E.
, and
Marsden
,
J. E.
,
2001
, “
Controlled Lagrangians and the Stabilization of Euler-Poincare Mechanical Systems
,”
Int. J. Robust Nonlinear Control
,
11
(
3
), pp.
191
214
.
9.
Holm
,
J. K.
, and
Spong
,
M. W.
,
2008
, “
Kinetic Energy Shaping for Gait Regulation of Underactuated Bipeds
,”
IEEE
International Conference on Control Applications, San Antonio, TX, Sept. 3–5, pp.
1232
1238
.
10.
Spong
,
M. W.
, and
Bullo
,
F.
,
2005
, “
Controlled Symmetries and Passive Walking
,”
IEEE Trans. Autom. Control
,
50
(
7
), pp.
1025
1031
.
11.
Gregg
,
R. D.
, and
Spong
,
M. W.
,
2010
, “
Reduction-Based Control of Three-Dimensional Bipedal Walking Robots
,”
Int. J. Rob. Res.
,
29
(
6
), pp.
680
702
.
12.
Lv
,
G.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
On the Design and Control of Highly Back Drivable Lower-Limb Exoskeletons: A Discussion of Past and Ongoing Work
,”
IEEE Control Syst. Mag.
,
38
(
6
), pp.
88
113
.
13.
De-León-Gómez
,
V.
,
Santibañez
,
V.
, and
Sandoval
,
J.
,
2017
, “
Interconnection and Damping Assignment Passivity-Based Control for a Compass-Like Biped Robot
,”
Int. J. Adv. Rob. Syst.
,
14
(
4
), epub.
14.
Sinnet
,
R. W.
, and
Ames
,
A. D.
,
2015
, “
Energy Shaping of Hybrid Systems Via Control Lyapunov Functions
,”
American Controls Conference
(
ACC
), Chicago, IL, July 1–3, pp.
5992
5997
.
15.
Sinnet
,
R. W.
,
2015
, “
Energy Shaping of Mechanical Systems Via Control Lyapunov Functions With Applications to Bipedal Locomotion
,”
Ph.D. thesis
, Texas A&M University, College Station, TX.https://oaktrust.library.tamu.edu/handle/1969.1/154978
16.
Yeatman
,
M. R.
,
Lv
,
G.
, and
Gregg
,
R. D.
,
2018
, “
Passivity-Based Control With a Generalized Energy Storage Function for Robust Walking of Biped Robots
,”
American Control Conference
(
ACC
),
Milwaukee, WI
,
June 27–29
, pp.
2958
2963
.
17.
Wang
,
S.-H.
, and
Davison
,
E.
,
1973
, “
On the Stabilization of Decentralized Control Systems
,”
IEEE Trans. Autom. Control
,
18
(
5
), pp.
473
478
.
18.
Hamed
,
K. A.
, and
Gregg
,
R. D.
,
2017
, “
Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking
,”
IEEE Trans. Control Syst. Technol.
,
25
(
4
), pp.
1153
1167
.
19.
Hamed
,
K.
, and
Gregg
,
R. D.
,
2018
, “
Decentralized Event-Based Controllers for Robust Stabilization of Hybrid Periodic Orbits: Application to Underactuated 3D Bipedal Walking
,”
IEEE Trans. Autom. Control
(epub).
20.
Martin
,
A. E.
, and
Gregg
,
R. D.
,
2017
, “
Stable, Robust Hybrid Zero Dynamics Control of Powered Lower-Limb Prostheses
,”
IEEE Trans. Autom. Control
,
62
(
8
), pp.
3930
3942
.
21.
Lv
,
G.
, and
Gregg
,
R. D.
,
2018
, “
Underactuated Potential Energy Shaping With Contact Constraints: Application to a Powered Knee-Ankle Orthosis
,”
IEEE Trans. Control Syst. Technol.
,
26
(
1
), pp.
181
193
.
22.
Ortega
,
R.
,
Perez
,
J. A. L.
,
Nicklasson
,
P. J.
, and
Sira-Ramirez
,
H.
,
2013
,
Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications
,
Springer Science and Business Media
,
Berlin
.
23.
Murray
,
R. M.
,
Li
,
Z.
,
Sastry
,
S. S.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
24.
Lv
,
G.
, and
Gregg
,
R. D.
,
2015
, “
Orthotic Body-Weight Support Through Underactuated Potential Energy Shaping With Contact Constraints
,”
54th IEEE Conference on Decision and Control
(
CDC
), Osaka, Japan, Dec. 15–18, pp.
1483
1490
.
25.
Lv
,
G.
, and
Gregg
,
R. D.
,
2017
, “
Towards Total Energy Shaping Control of Lower-Limb Exoskeletons
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp.
4851
4857
.
26.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
, and
Koditschek
,
D. E.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.
27.
Sepulchre
,
R.
,
Jankovic
,
M.
, and
Kokotovic
,
P. V.
,
2012
, Constructive Nonlinear Control,
Springer Science and Business Media
,
Berlin
.
28.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
, Vol.
3
,
Wiley
,
New York
.
29.
Spong
,
M.
,
Holm
,
J.
, and
Lee
,
D.
,
2007
, “
Passivity-Based Control of Bipedal Locomotion
,”
IEEE Rob. Autom. Mag.
,
14
(
2
), pp.
30
40
.
30.
Block
,
D. J.
,
Åström
,
K. J.
, and
Spong
,
M. W.
,
2007
, “
The Reaction Wheel Pendulum
,”
Synth. Lect. Control Mechatronics
,
1
(
1
), pp.
1
105
.
31.
Zefran
,
M.
,
Bullo
,
F.
, and
Stein
,
M.
,
2001
, “
A Notion of Passivity for Hybrid Systems
,”
40th IEEE Conference on Decision and Control
(
CDC
), Orlando, FL, Dec. 4–7, pp.
768
773
.
32.
Naldi
,
R.
, and
Sanfelice
,
R. G.
,
2013
, “
Passivity-Based Control for Hybrid Systems With Applications to Mechanical Systems Exhibiting Impacts
,”
Automatica
,
49
(
5
), pp.
1104
1116
.
33.
Asano
,
F.
,
Luo
,
Z.-W.
, and
Yamakita
,
M.
,
2005
, “
Biped Gait Generation and Control Based on a Unified Property of Passive Dynamic Walking
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
754
762
.
34.
Cheng
,
M.-Y.
, and
Lin
,
C.-S.
,
1996
, “
Measurement of Robustness for Biped Locomotion Using a Linearized Poincaré Map
,”
Robotica
,
14
(
3
), pp.
253
259
.
35.
Koolen
,
T.
,
De Boer
,
T.
,
Rebula
,
J.
,
Goswami
,
A.
, and
Pratt
,
J.
,
2012
, “
Capturability-Based Analysis and Control of Legged Locomotion—Part 1: Theory and Application to Three Simple Gait Models
,”
Int. J. Rob. Res.
,
31
(
9
), pp.
1094
1113
.
36.
Hobbelen
,
D. G.
, and
Wisse
,
M.
,
2007
, “
A Disturbance Rejection Measure for Limit Cycle Walkers: The Gait Sensitivity Norm
,”
IEEE Trans. Robotics
,
23
(
6
), pp.
1213
1224
.
37.
Wisse
,
M.
,
Hobbelen
,
D. G.
,
Rotteveel
,
R. J.
,
Anderson
,
S. O.
, and
Zeglin
,
G. J.
,
2006
, “
Ankle Springs Instead of Arc-Shaped Feet for Passive Dynamic Walkers
,”
Sixth IEEE-RAS International Conference on Humanoid Robots
, IEEE, Genova, Italy, Dec. 4–6, pp.
110
116
.
38.
Thangal
,
S. N. M.
,
Talaty
,
M.
, and
Balasubramanian
,
S.
,
2013
, “
Assessment of Gait Sensitivity Norm as a Predictor of Risk of Falling During Walking in a Neuromusculoskeletal model
,”
Med. Eng. Phys.
,
35
(
10
), pp.
1483
1489
.
39.
Hobbelen
,
D. G.
, and
Wisse
,
M.
,
2008
, “
Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
377
389
.
40.
Bhatia
,
G. S.
,
2002
, “
Passivity Based Control of Biped Robots
,” Master's thesis, University of Illinois, Champaign, IL.
41.
Gordon
,
D.
,
Robertson
,
E.
, and
Winter
,
D. A.
,
1980
, “
Mechanical Energy Generation, Absorption and Transfer Amongst Segments During Walking
,”
J. Biomech.
,
13
(
10
), pp.
845
854
.
42.
Nuño
,
E.
,
Basañez
,
L.
, and
Ortega
,
R.
,
2011
, “
Passivity-Based Control for Bilateral Teleoperation: A Tutorial
,”
Automatica
,
47
(
3
), pp.
485
495
.
You do not currently have access to this content.