Control-oriented models for automotive turbocharger (TC) compressors typically describe the compressor power assuming an isentropic thermodynamic process with fixed isentropic and mechanical efficiencies for power transmission between the turbine and the compressor. Although these simplifications make the control-oriented model tractable, they also introduce additional errors due to unmodeled dynamics. This is especially true for map-based approaches since the manufacture-provided maps tend to be sparse and often incomplete at the operational boundaries, especially at operational conditions with low mass flow rate and low speed. Extrapolation scheme is often used when the compressor is operated outside the mapped regions, which introduces additional errors. Furthermore, the manufacture-provided compressor maps, based on steady-flow bench tests, could be quite different from those under pulsating engine flow. In this paper, a physics-based model of compressor power is developed using Euler equations for turbomachinery, where the mass flow rate and the compressor rotational speed are used as model inputs. Two new coefficients, speed and power coefficients, are defined. As a result, this makes it possible to directly estimate the compressor power over the entire compressor operational range based on a single analytic relationship. The proposed modeling approach is validated against test data from standard TC flow bench tests, standard supercharger tests, steady-state, and certain transient engine dynamometer tests. Model validation results show that the proposed model has acceptable accuracy for model-based control design and also reduces the dimension of the parameter space typically needed to model compressor dynamics.

References

1.
Zinner
,
K.
,
1978
,
Supercharging the Internal Combustion Engine
,
Springer
,
Berlin
.
2.
Watson
,
N.
, and
Banisoleiman
,
K.
,
1988
, “A Variable-Geometry Turbocharger Control System for High Output Diesel Engines,”
SAE
Paper No. 880118.
3.
Kolmanovsky
,
I.
, Morall, P., Van Nieuwstadt, M., and Stefanopoulou, A.,
1999
, “
Issues in Modelling and Control of Intake Flow in Variable Geometry Turbocharged Engines
,”
Chapman and Hall CRC Research Notes in Mathematics
, CRC Press, Boca Raton, FL, pp. 436–445.
4.
Wahlström
,
J.
,
Eriksson
,
L.
, and
Nielsen
,
L.
,
2010
, “
EGR-VGT Control and Tuning for Pumping Work Minimization and Emission Control
,”
IEEE Trans. Control Syst. Technol.
,
18
(
4
), pp.
993
1003
.
5.
Moraal
,
P.
, and
Kolmanovsky
,
I.
,
1999
, “Turbocharger Modeling for Automotive Control Applications,”
SAE
Paper No. 1999-01-0908.
6.
Jensen
,
J. P.
,
Kristensen
,
A. F.
,
Sorenson
,
S. C.
,
Houbak
,
N.
, and
Hendricks
,
E.
,
1991
, “Mean Value Modeling of a Small Turbocharged Diesel Engine,”
SAE
Paper No. 910070.
7.
Upadhyay
,
D.
,
Utkin
,
V. I.
, and
Rizzoni
,
G.
,
2002
, “
Multivariable Control Design for Intake Flow Regulation of a Diesel Engine Using Sliding Mode
,”
IFAC 15th Triennial World Congress
, Barcelona, Spain, July 21–26, pp. 277–282.
8.
Jankovic
,
M.
, and
Kolmanovsky
,
I.
,
1998
, “
Robust Nonlinear Controller for Turbocharged Diesel Engines
,”
American Control Conference
(
ACC
), Philadelphia, PA, June 26, pp. 1389–1394.
9.
Zeng
,
T.
,
Upadhyay
,
D.
,
Sun
,
H.
, and
Zhu
,
G.
,
2016
, “
Physics-Based Turbine Power Models for a Variable Geometry Turbocharger
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp. 5099–5104.
10.
Kolmanovsky
,
I.
,
Moraal
,
P. E.
,
Van Nieuwstadt
,
M. J.
,
Criddle
,
M.
, and
Wood
,
P.
,
1997
, “Modeling and Identification of a 2.0 L Turbocharged DI Diesel Engine,” Ford, Dearborn, MI, Internal Technical Report No. SR-97-039.
11.
Mueller
,
M.
,
1997
, “Mean Value Modeling of Turbocharged Spark Ignition Engines,” Master thesis, Technical University of Denmark, Lyngby, Denmark.
12.
Schorn
,
N.
,
2014
, “
The Radial Turbine for Small Turbocharger Applications: Evolution and Analytical Methods for Twin-Entry Turbine Turbochargers
,”
SAE Int. J. Engines
,
7
(
3
), pp.
1422
1442
.
13.
Benson
,
R. S.
, and
Whitfield
,
A.
,
1965
, “
An Experimental Investigation of the Non-Steady Flow Characteristics of a Centrifugal Compressor
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
641
672
.
14.
Stricker
,
K.
, Kocher, L., Koeberlein, E., and Van Alstine, D. G.,
2011
, “Turbocharger Map Reduction for Control-Oriented Modeling,”
ASME
Paper No. DSCC2011-5992.
15.
El Hadef
,
J.
, Colin, G., Chamaillard, Y., and Talon, V.,
2012
, “
Physical-Based Algorithms for Interpolation and Extrapolation of Turbocharger Data Maps
,”
SAE Int. J. Engines
, 5(
2
), pp.
363
378
.
16.
Guzzella
,
L.
, and
Amstutz
,
A.
,
1998
, “
Control of Diesel Engines
,”
IEEE Control Syst. Mag.
,
18
(
5
), pp.
53–71
.
17.
Andersson
,
P.
,
2005
, “Air Charge Estimation in Turbocharged Spark Ignition Engines,”
Ph.D. thesis
, Linkoping University, Linköping, Sweden.
18.
Nakhjiri
,
M.
,
Pelz
,
P.
,
Matyschok
,
B.
,
Däubler
,
L.
, and
Horn
,
A.
,
2011
, “Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation,”
SAE
Paper No. 2011-01-2214.
19.
Canova
,
M.
,
Midlam-Mohler
,
S.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
,
2009
, “
Mean Value Modeling and Analysis of HCCI Diesel Engines With External Mixture Formation
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
1
), p.
011002
.
20.
Guan
,
C.
,
Theotokatos
,
G.
,
Zhou
,
P.
, and
Chen
,
H.
,
2014
, “
Computational Investigation of a Large Containership Propulsion Engine Operation at Slow Steaming Conditions
,”
Appl. Energy
,
130
, pp.
370
383
.
21.
Sieros
,
G.
,
Stamatis
,
A.
, and
Mathioudakis
,
K.
,
1997
, “
Jet Engine Component Maps for Performance Modeling and Diagnosis
,”
J. Propul. Power
,
13
(
5
), pp.
665–674
.
22.
Fang
,
X.
,
Chen
,
W.
,
Zhou
,
Z.
, and
Xu
,
Y.
,
2014
, “
Empirical Models for Efficiency and Mass Flow Rate of Centrifugal Compressors
,”
Int. J. Refrig.
,
41
, pp.
190
199
.
23.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
,
Macmillan Publishers
,
London
.
24.
Kerrebrock
,
J. L.
,
1992
,
Aircraft Engines and Gas Turbines
,
MIT Press
,
Cambridge, MA
.
25.
Balje
,
O. E.
,
1952
, “
A Contribution to the Problem of Designing Radial Turbomachines
,”
Trans. ASME
,
74
(
4
), pp.
451
472
.
26.
Dixon
,
S.
, and
Hall
,
C.
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
, Oxford, UK.
27.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
J. Eng. Power
,
98
(
2
), pp.
190
198
.
28.
Stahler
,
A. F.
,
1965
, “
The Slip Factor of a Radial Bladed Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
87
(
2
), pp.
181
188
.
29.
Paeng
,
K. S.
, and
Chung
,
M. K.
,
2001
, “
A New Slip Factor for Centrifugal Impellers
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
5
), pp.
645
649
.
30.
Bothmann
,
V.
, and
Reffstrup
,
J. O.
,
1983
, “
An Improved Slip Factor Formula
,”
Conference on Fluid Machinery
, pp.
59
68
.
31.
Gravdahl
,
J. T.
, and
Egeland
,
O.
,
1999
, “
Centrifugal Compressor Surge and Speed Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
5
), pp.
567
579
.
32.
SAE,
1995
, “Turbocharger Gas Stand Test Code,” SAE International, Warrendale, PA, Standard No.
J1826
.
33.
SAE,
1995
, “Supercharger Testing Standard,” SAE International, Warrendale, PA, Standard No.
SAE
J1723.
34.
DeRaad
,
S.
, Fulton, B., Gryglak, A., Hallgren, B., Hudson, A., Ives, D., Morgan, P., Styron, J., Waszczenko, E., and Cattermole, I.,
2010
, “The New Ford 6.7 L V-8 Turbocharged Diesel Engine,”
SAE
Paper No. 2010-01-1101.
35.
Sun
,
H.
, Hanna, D., Niessen, P., Fulton, B., Hu, L., Curtis, E. W., and Yi, J.,
2013
, “
Experimental Evaluation of Advanced Turbocharger Performance on a Light Duty Diesel Engine
,”
SAE Int. J. Engines
,
6
(
2
), pp.
788
796
.
36.
Serrano
,
J.
,
Pablo
,
O.
,
Francisco
,
A.
,
Miguel
,
R. B.
, and
Alain
,
L.
,
2013
, “
Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications
,”
SAE Int. J. Engines
,
6
(
2
), pp.
716
728
.
37.
Chesse
,
P.
,
Chalet
,
D.
, and
Tauzia
,
X.
,
2011
, “
Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor
,”
Oil Gas Sci. Technol.
,
66
(
5
), pp.
791
800
.
You do not currently have access to this content.