Time delay is a common phenomenon in robotic systems due to computational requirements and communication properties between or within high-level and low-level controllers as well as the physical constraints of the actuator and sensor. It is widely believed that delays are harmful for robotic systems in terms of stability and performance; however, we propose a different view that the time delay of the system may in some cases benefit system stability and performance. Therefore, in this paper, we discuss the influences of the displacement-feedback delay (single delay) and both displacement and velocity feedback delays (double delays) on robotic actuator systems by using the cluster treatment of characteristic roots (CTCR) methodology. Hence, we can ascertain the exact stability interval for single-delay systems and the rigorous stability region for double-delay systems. The influences of controller gains and the filtering frequency on the stability of the system are discussed. Based on the stability information coupled with the dominant root distribution, we propose one nonconventional rule which suggests increasing time delay to certain time windows to obtain the optimal system performance. The computation results are also verified on an actuator testbed.

References

1.
Anderson
,
R.
, and
Spong
,
M.
,
1989
, “
Bilateral Control of Teleoperators With Time Delay
,”
IEEE Trans. Autom. Control
,
34
(
5
), pp.
494
501
.
2.
Bejczy
,
A.
,
Kim
,
W.
, and
Venema
,
W.
,
1990
, “
The Phantom Robot: Predictive Displays for Teleoperation With Time Delay
,”
IEEE
International Conference on Robotics and Automation
, Cincinnati, OH, May 13–18, pp.
546
551
.
3.
Leung
,
G.
,
Francis
,
B.
, and
Apkarian
,
J.
,
1995
, “
Bilateral Controller for Teleoperators With Time Delay Via μ-Synthesis
,”
IEEE Trans. Rob. Autom.
,
11
(
1
), pp.
105
116
.
4.
Kelly
,
J.
,
Roy
,
N.
, and
Sukhatme
,
G.
,
2014
, “
Determining the Time Delay Between Inertial and Visual Sensor Measurements
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1514
1523
.
5.
Hulin
,
T.
,
Albu-Schaffer
,
A.
, and
Hirzinger
,
G.
,
2014
, “
Passivity and Stability Boundaries for Haptic Systems With Time Delay
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1297
1309
.
6.
Ai
,
B.
,
Zheng
,
Y.
,
Wong
,
D.
, and
Jang
,
S.
,
2011
, “
Stability Analysis of EWMA Run-to-Run Controller Subject to Stochastic Metrology Delay
,” 18th
IFAC
World Congress, Milan, Italy, Aug. 28–Sept. 2, pp.
12354
12359
.
7.
Ai
,
B.
,
2012
, “
Stability and Performance Analysis of Semiconductor Manufacturing Process With Exponentially Weighted Moving Average Controllers
,” Ph.D. thesis, Huazhong University of Science and Technology, Wuhan, Hubei.
8.
Ai
,
B.
,
Wong
,
D.
, and
Jang
,
S.
,
2015
, “
Stability Analysis of Semiconductor Manufacturing Process With EWMA Run-to-Run Controllers
,”
e-print arXiv:1510.08946[cs.SY]
.
9.
Imaida
,
T.
, and
Senda
,
K.
,
2015
, “
Performance Improvement of the PD-Based Bilateral Teleoperators With Time Delay by Introducing Relative D-Control
,”
Adv. Rob.
,
29
(
6
), pp.
385
400
.
10.
Suh
,
I.
, and
Bien
,
Z.
,
1979
, “
Proportional Minus Delay Controller
,”
IEEE Trans. Autom. Control
,
24
(
2
), pp.
370
372
.
11.
Pyragas
,
K.
,
1992
, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
,
170
(
6
), pp.
421
428
.
12.
Abdallah
,
C.
,
Dorato
,
P.
,
Benites-Read
,
J.
, and
Byrne
,
R.
,
1993
, “
Delayed Positive Feedback Can Stabilize Oscillatory Systems
,”
1993 American Control Conference
, pp.
3106
3107
.
13.
Kokame
,
H.
,
Hirata
,
K.
,
Konishi
,
K.
, and
Mori
,
T.
,
2001
, “
Difference Feedback Can Stabilize Uncertain Steady States
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
1908
1913
.
14.
Ulsoy
,
A.
,
2015
, “
Time-Delayed Control of SISO Systems for Improved Stability Margins
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
4
), p.
041014
.
15.
Olgac
,
N.
, and
Sipahi
,
R.
,
2002
, “
An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
793
797
.
16.
Olgac
,
N.
, and
Sipahi
,
R.
,
2006
, “
An Improved Procedure in Detecting the Stability Robustness of Systems With Uncertain Delay
,”
IEEE Trans. Autom. Control
,
51
(
7
), pp.
1164
1165
.
17.
Olgac
,
N.
, and
Sipahi
,
R.
,
2005
, “
The Cluster Treatment of Characteristic Roots and the Neutral Type Time-Delayed Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
88
97
.
18.
Sipahi
,
R.
, and
Olgac
,
N.
,
2006
, “
A Unique Methodology for the Stability Robustness of Multiple Time Delay Systems
,”
Syst. Control Lett.
,
55
(
10
), pp.
819
825
.
19.
Sipahi
,
R.
, and
Olgac
,
N.
,
2006
, “
Stability Map of Systems With Three Independent Delays
,”
2006 American Control Conference
, Minneapolis, MN, June 14–16, pp.
2451
2456
.
20.
Fazelinia
,
H.
,
Sipahi
,
R.
, and
Olgac
,
N.
,
2007
, “
Stability Robustness Analysis of Multiple Time-Delayed Systems Using “Building Block” Concept
,”
IEEE Trans. Autom. Control
,
52
(
5
), pp.
799
810
.
21.
Penin
,
L.
,
Matsumoto
,
K.
, and
Wakabayashi
,
S.
,
2000
, “
Force Reflection for Time-Delayed Teleoperation of Space Robots
,”
IEEE
International Conference on Robotics
, San Francisco, CA, Apr. 24–28, pp.
3120
3125
.
22.
Suzuki
,
T.
,
Sekine
,
T.
,
Fujii
,
T.
,
Asama
,
H.
, and
Endo
,
I.
,
2000
, “
Cooperative Formation Among Multiple Mobile Robot Teleoperation in Inspection Task
,” 39th
IEEE
International Conference on Decision and Control
, pp.
358
363
.
23.
Lee
,
D.
,
Martinez-Palafox
,
O.
, and
Spong
,
M. W.
,
2005
, “
Bilateral Teleoperation of Multiple Cooperative Robots Over Delayed Communication Networks: Application
,”
IEEE
International Conference on Robotics
, Apr. 18–22, pp.
366
371
.
24.
Lee
,
D.
, and
Spong
,
M.
,
2005
, “
Bilateral Teleoperation of Multiple Cooperative Robots Over Delayed Communication Networks: Theory
,”
IEEE
International Conference on Robotics
, Apr. 18–22, pp.
360
365
.
25.
Qiu
,
T.
,
Hamel
,
W.
, and
Lee
,
D.
,
2014
, “
Preliminary Experiments of Kinesthetic Exploration in a 6 DOF Teleoperation System
,”
IEEE
International Conference on Robotics
, Hong Kong, May 31–June 7, pp.
5959
5964
.
26.
Ohnishi
,
K.
,
Shimono
,
T.
, and
Natori
,
K.
,
2009
, “
Haptics for Medical Applications
,”
Artif. Life Rob.
,
13
(
2
), pp.
383
389
.
27.
Ohnishi
,
K.
,
2010
, “
Real World Haptics and Telehaptics for Medical Applications
,”
IEEE
International Conference on Industrial Electronics
, Bari, Italy, July 4–7, pp.
11
14
.
28.
Cheong
,
J.
,
Niculescu
,
S.
,
Annaswamy
,
A.
, and
Srinivasan
,
M.
,
2005
, “
Motion Synchronization in Virtual Environments With Shared Haptics and Large Time Delays
,”
IEEE
International Conference on Haptics
, Mar. 18–20, pp.
277
282
.
29.
Smith
,
O.
,
1957
, “
Closer Control of Loops With Dead Time
,”
Chem. Eng. Prog.
,
53
(
5
), pp.
217
219
.
30.
Takegaki
,
M.
, and
Arimoto
,
S.
,
1981
, “
A New Feedback Method for Dynamic Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
103
(
2
), pp.
119
125
.
31.
Koditschek
,
D.
,
1984
, “
Natural Motion for Robot Arms
,” 23rd
IEEE
International Conference on Decision and Control
, pp.
733
735
.
32.
Ortega
,
R.
, and
Spong
,
M.
,
1989
, “
Adaptive Motion Control of Rigid Robots: A Tutorial
,”
Automatica
,
25
(
6
), pp.
877
888
.
33.
Li
,
Z.
,
Xia
,
Y.
, and
Cao
,
X.
,
2013
, “
Adaptive Control of Bilateral Teleoperation With Unsymmetrical Time-Varying Delays
,”
Int. J. Innovations Comput. Inf. Control
,
9
(
2
), pp.
753
767
.
34.
Hokayem
,
P.
,
Stipanović
,
D.
, and
Spong
,
M.
,
2009
, “
Semiautonomous Control of Multiple Networked Lagrangian Systems
,”
Int. J. Robust Nonlinear Control
,
19
(
18
), pp.
2040
2055
.
35.
Insperger
,
T.
,
Kovacs
,
L.
,
Galambos
,
P.
, and
Stepan
,
G.
,
2010
, “
Increasing the Accuracy of Digital Force Control Process Using the Act-and-Wait Concept
,”
IEEE/ASME Trans. Mechatronics
,
15
(
2
), pp.
291
298
.
36.
Li
,
Z.
,
Xia
,
Y.
, and
Sun
,
F.
,
2014
, “
Adaptive Fuzzy Control of Multilateral Cooperative Teleoperation for Multiple Robotic Manipulators Under Random Time Delays
,”
IEEE Trans. Fuzzy Syst.
,
22
(
2
), pp.
437
450
.
37.
Li
,
Z.
,
Cao
,
X.
,
Tang
,
Y.
,
Li
,
R.
, and
Ye
,
W.
,
2013
, “
Bilateral Teleoperation of Holonomic Constrained Robotic Systems With Time-Varying Delays
,”
IEEE Trans. Instrum. Meas.
,
62
(
4
), pp.
752
765
.
38.
Seuret
,
A.
,
Ozbay
,
H.
,
Bonnet
,
C.
, and
Mounier
,
H.
,
2014
,
Low-Complexity Controllers for Time-Delay Systems
, Vol.
2
,
Springer
,
Berlin
.
39.
Diftler
,
M.
,
Mehling
,
J.
,
Abdallah
,
M.
,
Radford
,
N.
,
Bridgwater
,
L.
, and
Sanders
,
M.
,
2011
, “
Robonaut 2: The First Humanoid Robot in Space
,”
IEEE
International Conference on Robotics
, Shanghai, China, May 9–13, pp.
2178
2183
.
40.
Cheng
,
G.
,
Hyon
,
S.
,
Morimoto
,
J.
,
Ude
,
A.
,
Hale
,
J.
, and
Colvin
,
G.
,
2007
, “
CB: A Humanoid Research Platform for Exploring Neuroscience
,”
Adv. Rob.
,
21
(
10
), pp.
1097
1114
.
41.
Gu
,
G.
,
Zhu
,
L.
,
Xiong
,
Z.
, and
Ding
,
H.
,
2010
, “
Design of a Distributed Multiaxis Motion Control System Using the IEEE-1394 Bus
,”
IEEE Trans. Ind. Electron.
,
57
(
12
), pp.
4209
4218
.
42.
Ai
,
B.
,
Fan
,
Z.
, and
Gao
,
R.
,
2014
, “
Occupancy Estimation for Smart Building by an Auto-Regressive Hidden Markov Model
,”
American Control Conference
, Portland, OR, June 4–6, pp.
2234
2239
.
43.
Ai
,
B.
,
Zheng
,
Y.
,
Wang
,
Y.
,
Jang
,
S.
, and
Tao
,
S.
,
2010
, “
Cycle Forecasting EWMA (CF-EWMA) Approach for Drift and Fault in Mixed-Product Run-to-Run Process
,”
J. Process Control
,
20
(
5
), pp.
689
708
.
44.
Zheng
,
Y.
,
Ai
,
B.
,
Wong
,
D.
,
Jang
,
S.
, and
Zhang
,
J.
,
2010
, “
An EWMA Algorithm With a Cycled Resetting (CR) Discount Factor for Drift and Fault of High-Mix Run-to-Run Control
,”
IEEE Trans. Ind. Inf.
,
6
(
2
), pp.
229
242
.
45.
Ai
,
B.
,
Zheng
,
Y.
,
Jang
,
S.
,
Wang
,
Y.
,
Ye
,
L.
, and
Zhou
,
C.
,
2009
, “
The Optimal Drift-Compensatory and Fault Tolerant Approach for Mixed-Product Run-to-Run Control
,”
J. Process Control
,
19
(
8
), pp.
1401
1412
.
46.
Ai
,
B.
,
Zheng
,
Y.
,
Zhang
,
H.
,
Wang
,
Z.
, and
Zhang
,
Z.
,
2009
, “
Cycle Prediction EWMA Run-to-Run Controller for Mixed-Product Drifting Process
,” 48th
IEEE
International Conference on Decision and Control
, Shanghai, China, Dec. 15–18, pp.
1908
1913
.
47.
Ai
,
B.
,
Zheng
,
Y.
, and
Zhang
,
Z.
,
2009
, “
A Fault-Tolerant Algorithm With Cycled Resetting Discount Factor in Semiconductor Manufacturing Industry
,” 7th
IEEE
International Conference on Control and Automation
,
Christchurch
,
New Zealand
, Dec. 9–11, pp.
483
488
.
48.
Zheng
,
Y.
,
Ai
,
B.
,
Wang
,
Y.
, and
Zhang
,
H.
,
2009
, “
The dEWMA Fault Tolerant Approach for Mixed Product Run-to-Run Control
,”
IEEE
International Conference on Industrial Electronics
, Seoul, Korea, July 5–8, pp.
155
160
.
49.
Zhao
,
Y.
,
Paine
,
N.
,
Kim
,
K.
, and
Sentis
,
L.
,
2015
, “
Stability and Performance Limits of Latency-Prone Distributed Feedback Controllers
,”
IEEE Trans. Ind. Electron.
,
62
(
11
), pp.
7151
7162
.
50.
Paine
,
N.
, and
Sentis
,
L.
,
2015
, “
A Closed-Form Solution for Selecting Maximum Critically Damped Actuator Impedance Parameters
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
7
), p.
041011
.
51.
Stépán
,
G.
,
1989
,
Retarded Dynamical Systems: Stability and Characteristic Functions
, Vol.
200
,
Longman Scientific & Technical Essex
,
UK and Wiley, New York
.
52.
Hale
,
J.
,
1993
,
Introduction to Functional Differential Equations
, Vol.
99
,
Springer
,
Berlin
.
53.
Hale
,
J.
, and
Lunel
,
S.
,
2002
, “
Strong Stabilization of Neutral Functional Differential Equations
,”
IMA J. Math. Control Inf.
,
19
(
1–2
), pp.
5
23
.
54.
Hu
,
G.
,
1996
, “
Some Simple Criteria for Stability of Neutral Delay-Differential Systems
,”
Appl. Math. Comput.
,
80
(
2–3
), pp.
257
271
.
55.
Chen
,
J.
,
Gu
,
G.
, and
Nett
,
C.
,
1994
, “
A New Method for Computing Delay Margins for Stability of Linear Delay Systems
,” 33rd
IEEE
International Conference on Decision and Control
, Lake Buena Vista, FL, Dec. 14–16, pp.
433
437
.
56.
Niculescu
,
S.
,
2001
,
Delay Effects on Stability: A Robust Control Approach
, Vol.
269
,
Springer
,
Berlin
.
57.
Park
,
P.
,
1999
, “
A Delay-Dependent Stability Criterion for Systems With Uncertain Time-Invariant Delays
,”
IEEE Trans. Autom. Control
,
44
(
4
), pp.
876
877
.
58.
Rekasius
,
Z.
,
1980
, “
A Stability Test for Systems With Delays
,”
Joint Automation Control Conference
, Paper No. TP9–A.
59.
Thowsen
,
A.
,
1981
, “
An Analytic Stability Test for a Class of Time-Delay Systems
,”
IEEE Trans. Autom. Control
,
26
(
3
), pp.
735
736
.
60.
Hertz
,
D.
,
Jury
,
E.
, and
Zeheb
,
E.
,
1984
, “
Simplified Analytic Stability Test for Systems With Commensurate Time Delays
,”
IEE Proc. D (Control Theor. Appl.)
,
131
(
1
), pp.
52
56
.
61.
MacDonald
,
N.
,
1985
, “
Comments on a Simplified Analytical Stability Test for Systems With Delay
,”
IEE Proc. D (Control Theor. Appl.)
,
132
(
5
), pp.
237
238
.
62.
Kolmanovskiĭ
,
V.
,
1986
,
Stability of Functional Differential Equations
, Vol.
180
,
Elsevier
,
New York
.
63.
Zhang
,
L.
,
Yang
,
C.
,
Chajes
,
M.
, and
Cheng
,
A.
,
1993
, “
Stability of Active-Tendon Structural Control With Time Delay
,”
J. Eng. Mech. ASCE
,
119
(
5
), pp.
1017
1024
.
64.
Chiasson
,
J.
, and
Loiseau
,
J.
,
2007
,
Applications of Time Delay Systems
, Vol.
352
,
Springer
,
Berlin
.
65.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
, Vol.
178
,
Springer
,
Berlin
.
66.
Michiels
,
W.
, and
Niculescu
,
S.
,
2014
,
Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach
, Vol.
27
,
SIAM
,
Philadelphia
.
67.
Toker
,
O.
, and
Özbay
,
H.
,
1996
, “
Complexity Issues in Robust Stability of Linear Delay-Differential Systems
,”
Math. Control Signals
,
9
(
4
), pp.
386
400
.
68.
Akritas
,
A.
,
Gennadi
,
M.
, and
Vigklas
,
P.
,
2014
, “
Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences
,”
Serdica J. Comput.
,
8
(
1
), pp.
29
46
.
69.
Barnett
,
S.
,
1983
,
Polynomials and Linear Control Systems
,
Marcel Dekker
,
New York
.
70.
Sipahi
,
R.
, and
Delice
,
I. I.
,
2009
, “
Extraction of 3D Stability Switching Hypersurfaces of a Time Delay System With Multiple Fixed Delays
,”
Automatica
,
45
(
6
), pp.
1449
1454
.
71.
Sipahi
,
R.
, and
Delice
,
I.
,
2011
, “
Advanced Clustering With Frequency Sweeping Methodology for the Stability Analysis of Multiple Time-Delay Systems
,”
IEEE Trans. Autom. Control
,
56
(
2
), pp.
467
472
.
72.
Michiels
,
W.
, and
Niculescu
,
S.
,
2007
,
Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach
, Vol.
12
,
SIAM
,
Philadelphia
.
73.
Michiels
,
W.
,
Vyhlídal
,
T.
, and
Zítek
,
P.
,
2010
, “
Control Design for Time-Delay Systems Based on Quasi-Direct Pole Placement
,”
J. Process Control
,
20
(
3
), pp.
337
343
.
74.
Michiels
,
W.
, and
Vyhlídal
,
T.
,
2005
, “
An Eigenvalue Based Approach for the Stabilization of Linear Time-Delay Systems of Neutral Type
,”
Automatica
,
41
(
4
), pp.
991
998
.
75.
Vyhlídal
,
T.
, and
Zítek
,
P.
,
2003
, “
Quasipolynomial Mapping Based Rootfinder for Analysis of Time Delay Systems
,”
4th Proceedings of the IFAC Workshop on Time-Delay Systems
, pp.
227
232
.
76.
Vyhlídal
,
T.
, and
Zítek
,
P.
,
2009
, “
Mapping Based Algorithm for Large-Scale Computation of Quasi-Polynomial Zeros
,”
IEEE Trans. Autom. Control
,
54
(
1
), pp.
171
177
.
77.
Cooke
,
K.
, and
Driessche
,
P.
,
1996
, “
Analysis of an SEIRS Epidemic Model With Two Delays
,”
J. Math. Boil.
,
35
(
2
), pp.
240
260
.
78.
Cooke
,
K.
,
Driessche
,
P.
, and
Zou
,
X.
,
1999
, “
Interaction of Maturation Delay and Nonlinear Birth in Population and Epidemic Models
,”
J. Math. Boil.
,
39
(
4
), pp.
332
352
.
79.
Cooke
,
K.
, and
Driessche
,
P.
,
1986
, “
On Zeroes of Some Transcendental Equations
,”
Funkcialaj Ekvacio
,
29
(
1
), pp.
77
90
.
80.
Walton
,
K.
, and
Marshall
,
J.
,
1984
, “
Closed Form Solution for Time Delay Systems' Cost Functionals
,”
Int. J. Control
,
39
(
5
), pp.
1063
1071
.
81.
Walton
,
K.
, and
Marshall
,
J.
,
1987
, “
Direct Method for TDS Stability Analysis
,”
IEE Proc. D
,
134
(
2
), pp.
101
107
.
82.
Loiusell
,
J.
,
2001
, “
A Matrix Method for Determining the Imaginary Axis Eigenvalues of a Delay System
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
2008
2012
.
83.
Aström
,
K.
, and
Murray
,
R.
,
2010
,
Feedback Systems: An Introduction for Scientists and Engineers
,
Princeton
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.