Electroslag remelting (ESR) is used widely throughout the specialty metals industry. The process generally consists of a regularly shaped electrode, wherein a small amount is immersed in liquid slag at a temperature higher than the melting temperature of the electrode. Melting droplets from the electrode fall through the lower density slag into a liquid pool constrained by a crucible and solidify into an ingot. High quality ingots require that electrode melt rate and immersion depth be controlled at all times during the process. This can be difficult when process conditions are such that the temperature distribution in the electrode is not at steady state. This condition is encountered during the beginning and closing stages of the ESR process and also during some process disturbances such as when the melt zone passes through a transverse electrode crack. To address these transient melting situations, a new method of the ESR estimation and control has been developed that incorporates an accurate, reduced order melting model to continually estimate the temperature distribution in the electrode. The ESR process is highly nonlinear, noisy, and has coupled dynamics. An extended Kalman filter and an unscented Kalman filter were chosen as possible estimators and compared in the controller design. During the highly transient periods in melting, the unscented Kalman filter showed superior performance for estimating and controlling the system.

1.
Ahn
,
S.
, 2005, “
Modeling, Estimation, and Control of Electroslag Remelting Process
,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
2.
Melgaard
,
D. K.
,
Williamson
,
R. L.
, and
Beaman
,
J. J.
, 1998, “
Controlling Remelting Processes for Superalloys and Aerospace Ti Alloys
,”
JOM
1047-4838,
50
, pp.
13
17
.
3.
Beaman
,
J. J.
,
Ahn
,
S.
,
Tetzlaff
,
D. A.
,
Van Den Avyle
,
J.
, and
Melgaard
,
D. K.
, 1999, “
Modeling and Control of the Electroslag Remelting Process
,”
Proceedings of the Researcher’s Conference
,
Amarillo National Resource Center for Plutonium
, pp.
65
67
.
4.
Williamson
,
R. L.
,
Beaman
,
J. J.
,
Melgaard
,
D. K.
,
Shelmidine
,
G. J.
,
Tubesing
,
P. K.
, and
Aikin
,
R. M.
, 2001, “
Dynamic Melt Rate Control on a Laboratory Scale VAR Furnace Without Load Cell Feedback
,”
Proceedings of the International Symposium on Liquid Metal Processing and Casting
, Santa Fe, NM, pp.
175
186
.
5.
Beaman
,
J. J.
,
Williamson
,
R. L.
, and
Melgaard
,
D. K.
, 2001, “
A Nonlinear Reduced Order Model for Dynamic VAR Melt Rate Control
,”
Proceedings of the International Symposium on Liquid Metal Processing and Casting
, Santa Fe, NM, pp.
161
174
.
6.
Melgaard
,
D. K.
, and
Shelmidine
,
G. J.
, 2001, “
Electroslag Remelting Immersion Depth Control Using Characteristic Voltage Signatures
,”
Proceedings of the International Symposium on Liquid Metal Processing and Casting
, Santa Fe, NM, pp.
148
160
.
7.
Beaman
,
J. J.
,
Williamson
,
R. L.
,
Melgaard
,
D. K.
,
Shelmidine
,
G. J.
, and
Hamel
,
J. C.
, 2003, “
Model Based Gap and Melt Rate Control for VAR of Ti-6Al-4V
,”
Proceedings of the International Symposium on Liquid Metal Processing and Casting
, Nancy, France, pp.
67
76
.
8.
Gelb
,
A.
, 1974,
Applied Optimal Estimation
,
MIT
,
Cambridge, MA
.
9.
Jazwinski
,
A. H.
, 1970,
Stochastic Processes and Filtering Theory
,
Academic
,
New York
.
10.
Maybeck
,
P. S.
, 1994,
Stochastic Models, Estimation, and Control. Mathematics in Science and Engineering
, Vol.
2
,
Navtech Books & Software
,
Springfield, VA
.
11.
Julier
,
S. J.
,
Uhlmann
,
J.
, and
Durrant-Whyte
,
H.
, 1995, “
A New Approach for Filtering Nonlinear Systems
,”
Proceedings of the American Control Conference
, pp.
1628
1632
.
12.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
, 2004, “
Unscented Filtering and Nonlinear Estimation
,”
Proceedings of the IEEE
0018-9219,
92
(
3
), pp.
401
422
.
13.
Campbell
,
M. E.
, and
Brunke
,
S.
, 2001, “
Nonlinear Estimation of Aircraft Models for On-Line Control Customization
,”
Proceedings of the IEEE Aerospace Conference
, Vol.
2
, pp.
2621
2628
.
14.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
, 1997, “
A New Extension of the Kalman Filter to Nonlinear Systems
,”
Proceedings of the SPIE
0277-786X,
3068
, pp.
182
193
.
15.
Wan
,
E.
, and
van der Merwe
,
R.
, 2001, “
Kalman Filtering and Neural Networks
,”
The Unscented Kalman Filter
,
S.
Haykin
, ed.,
Wiley
,
New York
, Chap. 7.
16.
Tetzlaff
,
D. A.
, 2000, “
Understanding the Physical Phenomena in the Electro Slag Remelting Process
,” MS thesis, University of Texas at Austin, Austin, TX.
17.
Duckworth
,
W. E.
, and
Hoyle
,
G.
, 1969,
Electroslag Refining
,
Chapman and Hall Ltd.
,
London
.
18.
Hoyle
,
G.
, 1983,
Electroslag Process
,
Applied Science Publishers
,
Essex, England
.
19.
Ohmura
,
T.
,
Wakabayashi
,
M.
, and
Hosoda
,
T.
, 1983, “
A Heat Transfer Analysis of ESR Process
,”
Proceedings of the Fifth Annual ESR Symposium Conference
.
20.
Vujanović
,
B. D.
, and
Jones
,
S. E.
, 1990, “
Approximate Solutions of Canonical Heat Conduction Equations
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
836
842
.
21.
Zien
,
T.
, 1976, “
Approximate Calculation of Transient Heat Conduction
,”
AIAA J.
0001-1452,
14
(
3
), pp.
404
406
.
22.
Zien
,
T.
, 1978, “
Integral Solutions of Ablation Problems With Time-Dependant Heat
,”
AIAA J.
0001-1452,
16
(
12
), pp.
1287
1295
.
23.
Beaman
,
J. J.
,
Williamson
,
R. L.
,
Melgaard
,
D. K.
, and
Hamel
,
J.
, 2005, “
A Nonlinear Reduced Order Model for Estimation and Control of Vacuum Arc Remelting of Metal Alloys
,”
Proceedings of the IMECE
, Orlando, FL.
24.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
, 1996, “
A General Method for Approximating Non-Linear Transformations of Probability Distributions
,”
Technical Report, Department of Engineering Science, University of Oxford
(see also URL http://citeseer.nj.nec.com/julier96general.htmlhttp://citeseer.nj.nec.com/julier96general.html).
25.
van der Merwe
,
R.
, 2004, “
Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models
,” Ph.D. thesis, Oregon Health and Science University, OR.
26.
Williamson
,
R. L.
,
Beaman
,
J. J.
,
Melgaard
,
D. K.
,
Shelmidine
,
G. J.
,
Patel
,
A. D.
, and
Adasczik
,
C. B.
, 2003, “
A Demonstration of Melt Rate Control During VAR of “Cracked” Electrodes
,”
Proceedings of the International Symposium on Liquid Metal Processing and Casting
, Nancy, France, pp.
29
38
.
You do not currently have access to this content.