This paper treats the problem of estimating the heat flux through the free end of a thermoelastic rod, which is allowed to come into contact with a rigid obstacle. This problem is motivated by the need to develop techniques for indirect measurement of heating in applications, such as, brake systems and machine tools. Under a quasi-static approximation, the problem becomes that of characterizing thermal processes in the rod. Assuming that direct and exact measurements at the contacting end of the rod cannot be taken, the problem is to determine if there is contact with the obstacle; and if there is contact, to characterize the conductivity processes at the contacting end. We study the case of weighted-average temperature measurements throughout the rod. Identifiability results and on-line recursive estimation procedures are developed.

1.
Andrews
,
K. T.
,
Mikelich
,
A.
,
Shi
,
P.
,
Shillor
,
M.
, and
Wright
,
S.
, 1992, “
One-Dimensional Thermoelastic Contact With a Stress-Dependent Radiation Condition
,”
SIAM J. Math. Anal.
0036-1410,
23
, pp.
1393
1416
.
2.
Andrews
,
K. T.
,
Shi
,
P.
,
Shillor
,
M.
, and
Wright
,
S.
, 1993, “
Thermoelastic Contact With Barber’s Heat Exchange Condition
,”
Appl. Math. Optim.
0095-4616,
28
, pp.
11
48
.
3.
Jiang
,
S.
, and
Racke
,
R.
, 2000,
Evolution Equations in Thermoelasticity
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
4.
Barber
,
J. R.
, and
Ciavarella
,
M.
, 2000, “
Contact Mechanics
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
29
43
.
5.
Duvant
,
G.
, and
Lions
,
J. L.
, 1976,
Inequalities in Mechanics and Physics
,
Springer-Verlag
,
Berlin
.
6.
Allegretto
,
W.
,
Cannon
,
J. R.
, and
Lin
,
Y.
, 1997, “
A Parabolic Integrodifferential Equation Arising From Thermoelastic Contact
,”
Discrete Contin. Dyn. Syst.
1078-0947,
3
, pp.
217
234
.
7.
Copetti
,
M. I. M.
, and
Elliott
,
C.
, 1993, “
A One-Dimensional Quasi-Static Contact Problem in Linear Thermoelasticity
,”
Eur. J. Appl. Math.
0956-7925,
4
, pp.
151
174
.
8.
Siverguina
,
I.
, and
Polis
,
M.
, 2002, “
Boundary Observability of a Nonlinear Thermoelastic System
,”
Proceedings of the 5th International Symposium on Mathematical Theory of Networks and Systems
,
University of Notre Dame
, IN, August 12–16.
9.
Sivergina
,
I. F.
, and
Polis
,
M. P.
, 2005, “
Exact Controllability of a Nonlinear Thermoelastic Contact Problem
,”
Appl. Math. Optim.
0095-4616,
51
, pp.
107
122
.
10.
Zagrodzki
,
P.
,
Lam
,
K. B.
,
Al Bahkali
,
E.
, and
Barber
,
J. R.
, 2001, “
Nonlinear Transient Behavior of a Sliding System With Frictionally Excited Thermoelastic Instability
,”
J. Tribol.
0742-4787,
123
, pp.
699
708
.
11.
Pelesko
,
J. A.
, and
Bernstein
,
D. H.
, 2003,
Modeling MEMS and NEMS
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
12.
Gibson
,
A.
, 1999, “
Modeling and Estimation of Thermally Induced Bearing Loads in Machine Tool Spindles
,” Ph.D. dissertation, the University of Michigan.
13.
Sivergina
,
I.
,
Polis
,
M. P.
, and
Kolmanovsky
,
I.
, 2005, “
Boundary Heat Flux Estimation in Quasi-Static Thermoelastic Systems
,”
Proceedings of the 24th American Control Conference
,
Portland, OR
, June 8–10.
14.
Bartolini
,
C.
,
Ferrara
,
A.
, and
Stotsky
,
A.
, 1999, “
Robustness and Performance of an Indirect Adaptive Control Scheme in Presence of Bounded Disturbances
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
4
), pp.
789
793
.
15.
Kolmanovsky
,
I.
, and
Siverguina
,
I.
, 2001, “
Adaptive Identification Schemes in Presence of Bounded Disturbances: An Automotive Case Study
,”
Proceedings of IEEE Conference on Decision and Control
,
Orlando, Florida
, pp.
508
513
.
16.
Lions
,
J. L.
, and
Magenes
,
E.
, 1972,
Non-Homogeneous Boundary Value Problems and Applications
,
Springer-Verlag
,
New York
, Vol.
II
.
17.
Gripenberg
,
G.
,
Londed
,
S. O.
, and
Staffas
,
O.
, 1990,
Volterra Integral and Functional Equations
,
Cambridge University Press
,
Cambridge, New York
.
18.
Demetriou
,
M. A.
, and
Rosen
,
I. G.
, 1994, “
Adaptive Identification of Second-Order Distributed Parameter Systems
,”
Inverse Probl.
0266-5611,
10
, pp.
261
294
.
19.
Orlov
,
Y.
, and
Bentsman
,
J.
, 2000, “
Adaptive Distributed Parameter Systems Identification With Enforceable Identifiability Conditions and Reduced-Order Spatial Differentiation
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
203
216
.
20.
Ladyzenskaja
,
O. J.
,
Solonnikov
,
V. A.
, and
Uralceva
,
N. N.
, 1986,
Linear and Quasilinear Equations of Parabolic Type
,
American Mathematical Society
,
Providence, RI
.
21.
Brunner
,
H.
, and
van der Houwen
,
P. J.
, 1986, “
The Numerical Solution of Volterra Equations
,”
North-Holland
,
Amsterdam
.
You do not currently have access to this content.