Abstract

Composite materials are well known for their high strength-to-weight ratio, but their unique manufacturing process presents some challenges and is a source of geometric variations. To minimize the effects of such variations in the final product is the main goal of geometry assurance. To achieve that, variation simulation tools are used to predict variations and optimize manufacturing parameters, to ensure a robust design. In this paper, the most common variation sources linked to the manufacturing process are discussed. Then, variation simulation tools and features for parts and assemblies are presented. Applicability for composites of existing tools and other studies for metallic parts is compared. Finally, future challenges in variation simulation for composites are discussed.

References

1.
Mazumdar
,
S.
,
2001
,
Composites Manufacturing: Materials, Product, and Process Engineering
,
CRC Press
,
Boca Raton, FL
.
2.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Carlson
,
J.
,
2006
, “
Virtual Geometry Assurance for Effective Product Realization
,”
1st Nordic Conference on Product Lifecycle Management-NordPLM
,
Gothenburg, Sweden
,
Jan. 25–26
, Vol. 6, pp.
25
26
.
3.
Potter
,
K.
,
2009
, “
Understanding the Origins of Defects and Variability in Composites Manufacture
,”
International Conference on Composite Materials (ICCM)-17
,
Edinburgh, UK
,
July 27–31
, p.
18
.
4.
Jareteg
,
C.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindkvist
,
L.
,
Carlson
,
J.
,
Cromvik
,
C.
, and
Edelvik
,
F.
,
2014
, “
Variation Simulation for Composite Parts and Assemblies Including Variation in Fiber Orientation and Thickness
,”
Procedia CIRP: 5th CATS 2014 – CIRP Conference on Assembly Technologies and Systems
,
23
(
1
), pp.
235
240
.
5.
Söderberg
,
R.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Carlson
,
J. S.
,
2016
, “
Virtual Geometry Assurance Process and Toolbox
,”
Procedia CIRP: 14th CIRP CAT 2016 – CIRP Conference on Computer Aided Tolerancing
,
43
(
1
), pp.
3
12
.
6.
Söderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Design
,
10
(
2
), pp.
165
181
.
7.
Campbell
,
F. C.
,
2010
,
Structural Composite Materials
,
ASM International
,
Russell Township, OH
.
8.
Camanho
,
P.
, and
Hallett
,
S.
,
2015
,
Numerical Modelling of Failure in Advanced Composite Materials
,
Woodhead Publishing
,
Cambridge, UK
.
9.
Azzi
,
V.
, and
Tsai
,
S. W.
,
1965
, “
Anisotropic Strength of Composites
,”
Exp. Mech.
,
5
(
9
), pp.
283
288
.
10.
McIlhagger
,
A.
,
Archer
,
E.
, and
McIlhagger
,
R.
,
2020
, “Manufacturing Processes for Composite Materials and Components for Aerospace Applications,”
Polymer Composites in the Aerospace Industry
,
P. E.
Irving
and
C.
Soutis
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
59
81
.
11.
Daniel
,
I. M.
,
Ishai
,
O.
,
Daniel
,
I. M.
, and
Daniel
,
I.
,
2006
,
Engineering Mechanics of Composite Materials
, Vol. 1994,
Oxford University Press
,
New York
.
12.
Sohel
,
R.
, and
Raul
,
F.
,
2016
,
Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications
,
Woodhead Publishing
,
Cambridge, UK
.
13.
Sozer
,
E.
,
Simacek
,
P.
, and
Advani
,
S.
,
2012
, “Resin Transfer Molding (RTM) in Polymer Matrix Composites,”
Manufacturing Techniques for Polymer Matrix Composites (PMCs)
,
S. G.
Advani
and
K.-T.
Hsiao
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
245
309
.
14.
Cleco Tools
,
2022
, “
Cleco® Tools
,” https://www.clecotools.com/, Accessed July 1, 2022.
15.
Composite Materials Handbook-17
,
2012
,
Composite Materials Handbook, Volume 3 – Polymer Matrix Composites – Materials Usage, Design, and Analysis (CMH-17.
SAE International on Behalf of CMH-17, a division of Wichita State University.
16.
Bruehl
,
M.
,
2005
, “
Laser Template Projection for Composite Assembly
,”
Reinf. Plast.
,
49
(
9
), pp.
56
57
.
17.
Potter
,
K.
,
1979
, “
The Influence of Accurate Stretch Data for Reinforcements on the Production of Complex Structural Mouldings: Part 1. Deformation of Aligned Sheets and Fabrics
,”
Composites
,
10
(
3
), pp.
161
167
.
18.
Sjölander
,
J.
,
Hallander
,
P.
, and
Åkermo
,
M.
,
2016
, “
Forming Induced Wrinkling of Composite Laminates: A Numerical Study on Wrinkling Mechanisms
,”
Compos. Part A: Appl. Sci. Manuf.
,
81
(
1
), pp.
41
51
.
19.
Team
,
L. F.
,
KKraz
,
A. S.
,
Name
,
2022
, “
Addressing the Complex Design Challenges of Composite Parts Using Ansys Composite PrepPost (ACP)
.”
20.
Hubert
,
P.
, and
Poursartip
,
A.
,
1998
, “
A Review of Flow and Compaction Modelling Relevant to Thermoset Matrix Laminate Processing
,”
J. Reinf. Plast. Compos.
,
17
(
4
), pp.
286
318
.
21.
Zewi
,
I.
,
Daniel
,
I. M.
, and
Gotro
,
J.
,
1987
, “
Residual Stresses and Warpage in Woven-Glass/Epoxy Laminates
,”
Exp. Mech.
,
27
(
1
), pp.
44
50
.
22.
Twigg
,
G.
,
Poursartip
,
A.
, and
Fernlund
,
G.
,
2004
, “
Tool-Part Interaction in Composites Processing. Part I: Experimental Investigation and Analytical Model
,”
Compos. Part A: Appl. Sci. Manuf.
,
35
(
1
), pp.
121
133
.
23.
Kappel
,
E.
,
Rohwer
,
K.
,
Stefaniak
,
D.
, and
Wille
,
T.
,
2013
, “
Spring-In and Warpage-Progress in Simulating Manufacturing Aspects
,”
Mech. Composite Mater.
,
29
(
2
), p.
193
.
24.
Staab
,
G. H.
,
1999
, “6 – LAMINATE ANALYSIS,”
Laminar Composites
,
G. H.
Staab
, ed.,
Butterworth-Heinemann
,
Woburn
, MA, pp.
191
282
.
25.
Radford
,
D. W.
,
1995
, “
Volume Fraction Gradient Induced Warpage in Curved Composite Plates
,”
Compos. Eng.
,
5
(
7
), pp.
923
934
.
26.
Kim
,
J.-S.
,
1993
, “
On-Line Cure Monitoring and Viscosity Measurement of Carbon Fiber Epoxy Composite Materials
,”
J. Mater. Process. Technol.
,
37
(
1-4
), pp.
405
416
.
27.
Hsiao
,
H.-M.
,
Lee
,
S.
, and
Buyny
,
R.
,
2006
, “
Core Crush Problem in the Manufacturing of Composite Sandwich Structures: Mechanisms and Solutions
,”
AIAA J.
,
44
(
4
), pp.
901
907
.
28.
Michalski
,
M.
, and
Krauze
,
W.
,
2019
, “
Influence of Honeycomb Core Stabilization on Composite Sandwich Structure Geometry
,”
Trans. Aerosp. Res.
,
2019
(
3
), pp.
1
13
.
29.
Lööf
,
J.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2009
, “
Optimizing Locator Position to Maximize Robustness in Critical Product Dimensions
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, Vol. 48999, pp.
515
522
.
30.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2010
, “
Strategies for Optimization of Spot Welding Sequence With Respect to Geometrical Variation in Sheet Metal Assemblies
,”
ASME International Mechanical Engineering Congress and Exposition
,
Vancouver, Canada
,
Nov. 12–18
, Vol. 44274, pp.
569
577
.
31.
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2008
, “
Tolerance Simulation of Compliant Sheet Metal Assemblies Using Automatic Node-Based Contact Detection
,”
ASME International Mechanical Engineering Congress and Exposition
,
New York, NY
,
Aug. 3–6
, Vol. 48753, pp.
35
44
.
32.
DCS Quality Solutions
,
2020
, “
DCS Quality Solutions: Quality SPC and Tolerance Analysis
,”https://www.3dcs.com/, Accessed July 1, 2022.
33.
RD&T Technology
,
2021
, “
About RD&T Technology
,” https://rdnt.se/, Accessed July 1, 2022.
34.
Corrado
,
A.
, and
Polini
,
W.
,
2019
, “
Analysis of Process-Induced Deformation on the Spring-In of Carbon Fiber-Reinforced Polymer Thin Laminates
,”
J. Compos. Mater.
,
53
(
20
), pp.
2901
2907
.
35.
Corrado
,
A.
,
Polini
,
W.
,
Sorrentino
,
L.
, and
Bellini
,
C.
,
2018
, “
Geometrical Deviation Analysis of CFRP Thin Laminate Assemblies: Numerical and Experimental Results
,”
Compos. Sci. Technol.
,
168
(
1
), pp.
1
11
.
36.
Polini
,
W.
, and
Corrado
,
A.
,
2020
, “
Digital Twin of Composite Assembly Manufacturing Process
,”
Int. J. Prod. Res.
,
58
(
17
), pp.
5238
5252
.
37.
Bellini
,
C.
, and
Sorrentino
,
L.
,
2018
, “
Analysis of Cure Induced Deformation of CFRP U-Shaped Laminates
,”
Compos. Struct.
,
197
(
1
), pp.
1
9
.
38.
Bellini
,
C.
,
Sorrentino
,
L.
,
Polini
,
W.
, and
Corrado
,
A.
,
2017
, “
Spring-In Analysis of CFRP Thin Laminates: Numerical and Experimental Results
,”
Compos. Struct.
,
173
(
1
), pp.
17
24
.
39.
Ersoy
,
N.
,
Garstka
,
T.
,
Potter
,
K.
,
Wisnom
,
M. R.
,
Porter
,
D.
, and
Stringer
,
G.
,
2010
, “
Modelling of the Spring-In Phenomenon in Curved Parts Made of a Thermosetting Composite
,”
Composites Part A: Appl. Sci. Manuf.
,
41
(
3
), pp.
410
418
.
40.
Ding
,
Y.
,
Chiu
,
W. K.
, and
Liu
,
X.
,
2001
, “
Anisotropy Related ‘Spring-In’ of Angled Composite Shells
,”
Polymers Polym. Compos.
,
9
(
6
), pp.
393
402
.
41.
Albert
,
C.
, and
Fernlund
,
G.
,
2002
, “
Spring-In and Warpage of Angled Composite Laminates
,”
Compos. Sci. Technol.
,
62
(
14
), pp.
1895
1912
.
42.
Jareteg
,
C.
,
Wärmefjord
,
K.
,
Cromvik
,
C.
,
Söderberg
,
R.
,
Lindkvist
,
L.
,
Carlson
,
J.
,
Larsson
,
S.
, and
Edelvik
,
F.
,
2016
, “
Geometry Assurance Integrating Process Variation With Simulation of Spring-In for Composite Parts and Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
3
), p.
031003
.
43.
Çiçek
,
K. F.
,
Erdal
,
M.
, and
Kayran
,
A.
,
2017
, “
Experimental and Numerical Study of Process-Induced Total Spring-In of Corner-Shaped Composite Parts
,”
J. Compos. Mater.
,
51
(
16
), pp.
2347
2361
.
44.
Polini
,
W.
, and
Corrado
,
A.
,
2020
, “
Generating a Skin-Based Meta-Model for Compliant Parts in Composite Material: Numerical and Experimental Results
,”
Eng. Comput.
,
38
(
1
), pp.
167
179
.
45.
Krogh
,
C.
,
Bak
,
B. L.
,
Lindgaard
,
E.
,
Olesen
,
A. M.
,
Hermansen
,
S. M.
,
Broberg
,
P. H.
,
Kepler
,
J. A.
,
Lund
,
E.
, and
Jakobsen
,
J.
,
2021
, “
A Simple MATLAB Draping Code for Fiber-Reinforced Composites With Application to Optimization of Manufacturing Process Parameters
,”
Struct. Multidiscipl. Optim.
,
64
(
1
), pp.
457
471
.
46.
Boisse
,
P.
,
Colmars
,
J.
,
Hamila
,
N.
,
Naouar
,
N.
, and
Steer
,
Q.
,
2018
, “
Bending and Wrinkling of Composite Fiber Preforms and Prepregs. A Review and New Developments in the Draping Simulations
,”
Composites Part B: Eng.
,
141
(
1
), pp.
234
249
.
47.
MSC Software Corporation
,
2022
, “
MSC Software Corporation
,” https://hexagon.com/, Accessed November 1, 2022.
48.
Fibersim
,
2022
, “
Fibersim: Siemens Software
,” https://www.plm.automation.siemens.com/global/en/products/nx/fibersim.html, Accessed August 1, 2022.
49.
Fernlund
,
G.
,
Poursartip
,
A.
,
Twigg
,
G.
, and
Albert
,
C.
,
2003
,
Residual Stress, Spring-In and Warpage in Autoclaved Composite Parts
,
Society of Manufacturing Engineers
,
Southfield, MI
.
50.
Ding
,
A.
,
Li
,
S.
,
Wang
,
J.
, and
Ni
,
A.
,
2017
, “
A New Analytical Solution for Spring-In of Curved Composite Parts
,”
Compos. Sci. Technol.
,
142
(
1
), pp.
30
40
.
51.
Ding
,
A.
,
Li
,
S.
,
Sun
,
J.
,
Wang
,
J.
, and
Zu
,
L.
,
2016
, “
A Thermo-Viscoelastic Model of Process-Induced Residual Stresses in Composite Structures With Considering Thermal Dependence
,”
Composite Struct.
,
136
(
1
), pp.
34
43
.
52.
Svanberg
,
J. M.
, and
Holmberg
,
J.
,
2001
, “
An Experimental Investigation on Mechanisms for Manufacturing Induced Shape Distortions in Homogeneous and Balanced Laminates
,”
Compos. Part A: Appl. Sci. Manuf.
,
32
(
6
), pp.
827
838
.
53.
Kappel
,
E.
,
Stefaniak
,
D.
, and
Hühne
,
C.
,
2013
, “
Process Distortions in Prepreg Manufacturing – An Experimental Study on CFRP L-Profiles
,”
Compos. Struct.
,
106
(
1
), pp.
615
625
.
54.
Fernlund
,
G.
,
2005
, “
Spring-In of Angled Sandwich Panels
,”
Compos. Sci. Technol.
,
65
(
2
), pp.
317
323
.
55.
Al-Dhaheri
,
M.
,
Khan
,
K.
,
Umer
,
R.
,
van Liempt
,
F.
, and
Cantwell
,
W.
,
2020
, “
Process-Induced Deformation in U-shaped Honeycomb Aerospace Composite Structures
,”
Compos. Struct.
,
248
(
1
), p.
112503
.
56.
Polini
,
W.
, and
Corrado
,
A.
,
2019
, “
Uncertainty in Manufacturing of Lightweight Products in Composite Laminate: Part 1-Numerical Approach
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5
), pp.
1423
1434
.
57.
Polini
,
W.
, and
Corrado
,
A.
,
2019
, “
Uncertainty in Manufacturing of Lightweight Products in Composite Laminate-Part 2: Experimental Validation
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5
), pp.
1391
1401
.
58.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
59.
Polini
,
W.
, and
Corrado
,
A.
,
2021
, “
Two Numerical Tools for Geometrical Deviation Management in Composite Assemblies: A Comparison
,”
J. Compos. Mater.
,
55
(
9
), pp.
1185
1196
.
60.
Polini
,
W.
, and
Corrado
,
A.
,
2020
, “
Methods of Influence Coefficients to Evaluate Stress and Deviation Distribution of Flexible Assemblies-A Review
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5
), pp.
2901
2915
.
61.
Söderberg
,
R.
,
Wärmefjord
,
K.
, and
Lindkvist
,
L.
,
2015
, “
Variation Simulation of Stress During Assembly of Composite Parts
,”
CIRP Ann.
,
64
(
1
), pp.
17
20
.
62.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.
63.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Carlson
,
J. S.
,
2006
, “
Managing Physical Dependencies Through Location System Design
,”
J. Eng. Design
,
17
(
4
), pp.
325
346
.
64.
Wang
,
H.
,
Zhang
,
S.
, and
Yu
,
J.
,
2018
, “
Computer Aided Tolerancing of Composite Elevator Assembly Involving Clamping Forces Coordination
,”
Procedia CIRP: The 15th CIRP Conference on Computer Aided Tolerancing, CIRP CAT 2018
,
75
(
1
), pp.
256
260
.
65.
Wang
,
H.
, and
Liu
,
J.
,
2016
, “
Tolerance Simulation of Composite Wingbox Assembly Considering Preloading-Modified Distribution
,”
Assembly Autom.
,
36
(
3
), pp.
224
232
.
66.
Yang
,
Y.
,
Jin
,
Y.
,
Price
,
M.
,
Abdelal
,
G.
,
Maropoulos
,
P.
, and
Higgins
,
C.
,
2021
, “
Gap Volume Prediction for Aircraft Wing Assembly
,”
Procedia Manuf.: 10th CIRP Sponsored Conference on Digital Enterprise Technologies (DET 2020)
,
54
(
1
), pp.
227
232
.
67.
Zaitseva
,
N.
,
Lupuleac
,
S.
,
Khashba
,
V.
,
Shinder
,
J.
, and
Bonhomme
,
E.
,
2020
, “
Approaches to Initial Gap Modeling in Final Aircraft Assembly Simulation
,”
ASME International Mechanical Engineering Congress and Exposition
,
Virtual Conference, Online
,
Nov. 16–19
, p. V02BT02A059.
68.
Wang
,
Q.
,
Dou
,
Y.
,
Cheng
,
L.
, and
Ke
,
Y.
,
2017
, “
Shimming Design and Optimal Selection for Non-Uniform Gaps in Wing Assembly
,”
Assembly Autom.
,
37
(
4
), pp.
471
482
.
69.
Schmick
,
F.
,
Lüders
,
N. O.
, and
Wollnack
,
J.
,
2016
, “
Automated Assembly of Large CFRP Structures: Adaptive Filling of Joining Gaps With Additive Manufacturing
,”
2016 IEEE International Symposium on Assembly and Manufacturing (ISAM)
,
Fort Worth, TX
,
Aug. 21–22
, IEEE, pp.
126
132
.
70.
Lacroix
,
C.
,
Mathieu
,
L.
,
Thiébaut
,
F.
,
Douilly
,
M.
, and
Falgarone
,
H.
,
2015
, “
Numerical Process Based on Measuring Data for Gap Prediction of an Assembly
,”
Procedia CIRP: 13th CIRP conference on Computer Aided Tolerancing
,
27
(
1
), pp.
97
102
.
71.
Papini
,
M.
,
Fernlund
,
G.
, and
Spelt
,
J.
,
1994
, “
The Effect of Geometry on the Fracture of Adhesive Joints
,”
Int. J. Adhes. Adhes.
,
14
(
1
), pp.
5
13
.
72.
Corrado
,
A.
, and
Polini
,
W.
,
2022
, “
Effects of Adherends’ Misalignment on the Strength of Single-Lap Joints Under 3-point and 4-point Bending Tests
,”
Int. J. Adv. Manuf. Technol.
,
123
(
11–12
), pp.
3819
3829
.
73.
Polini
,
W.
, and
Corrado
,
A.
,
2020
, “
Effect of Adherends Misalignment on the Strength of Single-Lap Bonded Joints
,”
Int. J. Adv. Manuf. Technol.
,
106
(
3
), pp.
817
828
.
74.
Sanjay Mavinkere
,
R.
,
Jyotishkumar
,
P.
,
Suchart
,
S.
, and
Sabu
,
T.
,
2022
,
Handbook of Epoxy/Fiber Composites
, 1st ed.,
Springer
.
75.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2010
, “
Variation Simulation of Spot Welding Sequence for Sheet Metal Assemblies
,”
Proceedings of Norddesign 2010 International Conference on Methods and Tools for Product and Production Development
,
Gothenburg, Sweden
,
Aug. 25–27
, pp.
519
528
.
76.
Sadeghi Tabar
,
R.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2021
, “
Rapid Sequence Optimization of Spot Welds for Improved Geometrical Quality Using a Novel Stepwise Algorithm
,”
Eng. Optim.
,
53
(
5
), pp.
867
884
.
77.
Pogarskaia
,
T.
,
Lupuleac
,
S.
,
Shinder
,
J.
, and
Westphal
,
P.
,
2022
, “
Optimization of the Installation Sequence for the Temporary Fasteners in the Aircraft Industry
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
040901
.
78.
Pogarskaia
,
T.
,
Lupuleac
,
S.
, and
Bonhomme
,
E.
,
2020
, “
Novel Approach to Optimization of Fastener Pattern for Airframe Assembly Process
,”
Procedia CIRP: 53rd CIRP Conference on Manufacturing Systems 2020
,
93
(
1
), pp.
1151
1157
.
79.
Aderiani
,
A.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
Developing a Selective Assembly Technique for Sheet Metal Assemblies
,”
Int. J. Prod. Res.
,
57
(
22
), pp.
7174
7188
.
80.
Aderiani
,
A.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2021
, “
Combining Selective Assembly and Individualized Locator Adjustments Techniques in a Smart Assembly Line
,”
Procedia CIRP: 8th CIRP Conference of Assembly Technology and Systems
,
97
(
1
), pp.
429
434
.
You do not currently have access to this content.