Abstract

In this article, a centralized two-block separable convex optimization with equality constraint and its extension to multi-block optimization are considered. The first fully parallel primal-dual discrete-time algorithm called Parallel Alternating Direction Primal-Dual (PADPD) is proposed. In the algorithm, the primal variables are updated in an alternating fashion like Alternating Direction Method of Multipliers (ADMM). The algorithm can handle non-smoothness of objective functions with strong convergence. Unlike existing discrete-time algorithms such as Method of Multipliers (MM), ADMM, Parallel ADMM, Bi-Alternating Direction Method of Multipliers (Bi-ADMM), and Primal-Dual Fixed Point (PDFP) algorithms, all primal and dual variables in the proposed algorithm are updated independently. Therefore, the time complexity of the algorithm can be significantly reduced. It is shown that the rate of convergence of the algorithm for quadratic or linear cost functions is exponential or linear under suitable assumptions. The algorithm can be directly extended to any finite multi-block optimization without further assumptions while preserving its convergence. PADPD algorithm not only can compute more iterations (since it is fully parallel) for the same time-step but it is also possible that PADPD algorithm can have a faster convergence rate than that of ADMM. Finally, two numerical examples are provided in order to show advantage of PADPD algorithm.

References

1.
Alaviani
,
S. S.
, and
Kelkar
,
A. G.
,
2021
, “
Parallel Alternating Direction Primal-Dual (PADPD) Algorithm for Centralized Optimization
,” IEEE Conference of Decision Control, Austin, TX, Dec. 13–17, pp.
962
967
.
2.
Boyd
,
S.
,
Parikh
,
N.
,
Chu
,
E.
,
Peleato
,
B.
, and
Eckstein
,
J.
,
2010
, “
Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers
,”
Foundat. Trends Mach. Learn.
,
3
, pp.
1
122
.
3.
Chen
,
S.
,
Donoho
,
D.
, and
Saunders
,
M.
,
1998
, “
Atomic Decomposition by Basis Pursuits
,”
SIAM J. Sci. Comput.
,
20
, pp.
33
61
.
4.
Donoho
,
D.
,
2006
, “
Compressed Sensing
,”
IEEE Trans. Inform. Theory
,
52
, pp.
1289
1306
.
5.
Candès
,
E.
,
Romberg
,
J.
, and
Tao
,
T.
,
2006
, “
Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information
,”
IEEE Trans. Inform. Theory
,
52
, pp.
489
509
.
6.
Candès
,
E.
, and
Tao
,
T.
,
2005
, “
Decoding by Linear Programming
,”
IEEE Trans. Inform. Theory
,
51
, pp.
4203
4215
.
7.
Arrow
,
K.
,
Hurwicz
,
L.
, and
Uzawa
,
H.
,
1958
,
LATE X: Studies in Linear and Nonlinear Programming
,
Stanford University Press
,
Stanford, CA
.
8.
Wang
,
J.
, and
Elia
,
N.
,
2011
, “
A Control Perspective for Centralized and Distributed Convex Optimization
,”
IEEE Conference on Decision and Control and European Control
,
Orlando, FL
,
Dec. 12–15
, pp.
3800
3805
.
9.
Jakovetić
,
D.
,
Bajović
,
D.
,
Xavier
,
J.
, and
Moura
,
J. M. F.
,
2020
, “
Primal-Dual Method for Large-Scale and Distributed Convex Optimization and Data Analytic
,”
Proc. IEEE
,
108
, pp.
1923
1938
.
10.
Hestenes
,
M. R.
,
1969
, “
Multiplier and Gradient Methods
,”
J. Optim. Theor. Appl.
,
4
, pp.
302
320
.
11.
Hestenes
,
M. R.
,
1969
, “Multiplier and Gradient Methods,” Computing Methods in Optimization Problems.
12.
Powell
,
M. J. D.
,
1969
, “A Method for Nonlinear Constraints in Minimization Problems,” Optimization.
13.
Bertsekas
,
D. P.
, and
Tsitsiklis
,
J. N.
,
1989
,
Parallel and Distributed Computation: Numerical Methods
,
Prentice Hall
,
Englewood Cliffs, NJ
.
14.
Rawat
,
A.
, and
Elia
,
N.
,
2018
, “
Distributed Method of Multiplier for Coupled Lagrangian Problems: A Control Approach
,”
American Control Conference
,
Wisconsin Center, Milwaukee, WI
,
June 17–29
, pp.
6475
6480
.
15.
Rawat
,
A.
, and
Elia
,
N.
,
2018
, “
Fast Distributed Method of Multiplier for Coupled Lagrangian Problems: A Control Approach
,”
IEEE Conference on Decision and Control
,
Miami Beach, FL
,
Dec. 17–19
, pp.
5445
5450
.
16.
Sherson
,
T.
,
Heusdens
,
R.
, and
Kleijn
,
W. B.
,
2019
, “
On the Distributed Method of Multipliers for Separable Convex Optimization Problems
,”
IEEE Trans. Signal Inform. Processing Over Netw.
,
5
, pp.
495
510
.
17.
Glowinski
,
R.
, and
Marrocco
,
A.
,
1975
, “Sur L’approximation Par Elements Finis D’ordre Un Et La Resolution Par Penalisation-dualité D’uneclasse De Problems De Dirichlet Non Lineares,”
Revue Française d’Automatique, Informatique, et Recherche Opérationelle
, Vol.
9
, pp.
41
76
.
18.
Gabay
,
D.
, and
Mercier
,
B.
,
1976
, “
A Dual Algorithm for the Solution of Nonlinear Variational Problems Via Finite Element Approximations
,”
Comput. Math. Appl.
,
2
, pp.
17
40
.
19.
Gabay
,
D.
,
1983
, “Applications of the Method of Multipliers to Variational Inequalities,”
Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems
.
20.
Chen
,
C.
,
He
,
B.
,
Ye
,
Y.
, and
Yuan
,
X.
,
2016
, “
The Direct Extension of ADMM for Multi-Block Convex Minimization Problems Is Not Necessarily Convergent
,”
Math. Program., Ser. A
,
155
, pp.
57
79
.
21.
Davis
,
D.
, and
Yin
,
W.
,
2017
, “
A Three-Operator Splitting Scheme and Its Optimization Applications
,”
Set-Valued Var. Anal.
,
25
, pp.
829
858
.
22.
Chen
,
L.
,
Chang
,
X.
, and
Liu
,
S.
,
2020
, “
A Three-Operator Splitting Perspective of a Three-Block ADMM for Convex Quadratic Semidefinite Programming and Beyond
,”
Asia-Pacific J. Operat. Res.
,
37
, pp.
1
23
.
23.
He
,
B.
,
Xu
,
H.-K.
, and
Yuan
,
X.
,
2016
, “
On the Proximal Jacobian Decomposition of ALM for Multiple-Block Separable Convex Optimization Problems and Its Relationship to ADMM
,”
J. Sci. Comput.
,
66
, pp.
1204
1217
.
24.
Deng
,
W.
,
Lai
,
M.-J.
,
Peng
,
Z.
, and
Yin
,
W.
,
2017
, “
Parallel Multi-Block ADMM With O(1/k) Convergence
,”
J. Sci. Comput.
,
71
, pp.
712
736
.
25.
Chang
,
X.
,
Liu
,
S.
,
Zhao
,
P.
, and
Li
,
X.
,
2018
, “
Convergent Prediction-Correction-Based ADMM for Multi-Block Separable Convex Programming
,”
J. Comput. Appl. Math.
,
335
, pp.
270
288
.
26.
Wang
,
H.
,
Banerjee
,
A.
, and
Luo
,
Z.-Q.
,
2014
, “Parallel Alternating Direction Method of Multipliers,”
Advances in Neural Information Processing Systems 27 (NIPS)
, pp.
1
9
.
27.
Yan
,
J.
,
Guo
,
F.
,
Wen
,
C.
, and
Li
,
G.
,
2020
, “
Parallel Alternating Direction Method of Multipliers
,”
Infor. Sci.
,
507
, pp.
185
196
.
28.
Han
,
D.
,
Yuan
,
X.
, and
Zhang
,
W.
,
2014
, “
An Augmented Lagrangian Based Parallel Splitting for Separable Convex Minimization With Applications to Image Processing
,”
Mathe. Comput.
,
83
, pp.
263
2291
.
29.
He
,
B.
,
Hou
,
L.
, and
Yuan
,
X.
,
2015
, “
On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming
,”
SIAM J. Optim.
,
25
, pp.
2274
2312
.
30.
Shen
,
Y.
,
Gao
,
Q.
, and
Yin
,
X.
,
2022
, “
A Multi-Parameter Parallel ADMM for Multi-Block Lineraly Constrained Separable Convex Optimization
,”
Appl. Num. Anal.
,
171
, pp.
369
388
.
31.
Schizas
,
I. D.
,
Ribeiro
,
A.
, and
Giannakis
,
G. B.
,
2008
, “
Consensus in Ad Hoc WSNS with Noisy Links—Part I: Distributed Estimation of Deterministic Signals
,”
IEEE Trans. Signal Process.
,
56
, pp.
350
364
.
32.
Schizas
,
I. D.
,
Giannakis
,
G. B.
,
Roumeliotis
,
S. I.
, and
Ribeiro
,
A. B.
,
2008
, “
Consensus in Ad Hoc Wsns With Noisy Links—Part Ii: Distributed Estimation and Smoothing of Random Signals
,”
IEEE Trans. Signal Process.
,
56
, pp.
1650
1666
.
33.
Hong
,
T. H.
, and
Wang
,
X.
,
2015
, “
Multi-Agent Distributed Optimization Via Inexact Consensus Admm
,”
IEEE Trans. Signal Process.
,
63
, pp.
482
497
.
34.
Erseghe
,
T.
,
2012
, “
A Distributed and Scalable Processing Method Based Upon Admm
,”
IEEE Trans. Signal Process.
,
19
, pp.
563
566
.
35.
Mota
,
J. F. C.
,
Xavier
,
J. M. F.
,
Aguiar
,
P. M. Q.
, and
Püschel
,
M.
,
2015
, “
Distributed Optimization With Local Domains: Applications in MPC and Network Flows
,”
IEEE Trans. Autom. Cont.
,
60
, pp.
2004
2019
.
36.
Wei
,
E.
, and
Ozdaglar
,
A.
,
2012
, “
Distributed Alternating Direction Method of Multipliers
,” IEEE Conference on Decision and Control, Dec. 10–13,
Maui, HI
, pp.
5445
5450
.
37.
Ling
,
Q.
,
Shi
,
W.
,
Wu
,
G.
, and
Ribeiro
,
A.
,
2015
, “
Dlm: Decentralized Linearized Alternating Direction Method of Multipliers
,”
IEEE Trans. Signal Process.
,
63
, pp.
4051
4064
.
38.
Zhang
,
G.
,
Heusdens
,
R.
, and
Kleijn
,
W. B.
,
2014
, “
On the Convergence Rate of the Bi-Alternating Direction Method of Multipliers
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
,
Florence, Italy
,
May 4–9
, pp.
3897
3901
.
39.
Zhang
,
G.
, and
Heusdens
,
R.
,
2015
, “
Bi-Alternating Direction Method of Multipliers Over Graphs
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
,
Brisbane, Australia
,
Apr. 19–24
, pp.
3571
3575
.
40.
Zhang
,
G.
, and
Heusdens
,
R.
,
2013
, “
Bi-Alternating Direction Method of Multipliers
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
,
Vancouver, Canada
,
May 26–31
, pp.
3317
3321
.
41.
Chen
,
P.
,
Huang
,
J.
, and
Zhang
,
X.
,
2013
, “
A Primal-Dual Fixed Point Algorithm for Convex Separable Minimization With Applications to Image Restoration
,”
Inverse Probl.
,
29
, p.
025011
.
42.
Wen
,
M.
,
Tang
,
Y.
,
Cui
,
A.
, and
Peng
,
J.
,
2019
, “
Efficient Primal-Dual Fixed Point Algorithms With Dynamic Step Size for Composite Convex Optimization Problems
,”
Multidi. Syst. Signal Processing
,
30
, pp.
1531
1544
.
43.
Huang
,
W.
, and
Tang
,
Y.
,
2020
, “
Primal-Dual Fixed Point Algorithm Based on Adapted Metric Method for Solving Convex Minimization Problem With Application
,”
Appl. Numer. Math.
,
157
, pp.
236
254
.
44.
Chen
,
P.
,
Huang
,
J.
, and
Zhang
,
X.
,
2016
, “
A Primal-Dual Fixed Point Algorithm for Multi-Block Convex Minimization
,”
J. Comput. Math.
,
34
, pp.
723
738
.
45.
Tseng
,
P.
,
2000
, “
A Modified Forward-Backward Splitting Method for Maximal Monotone Mappings
,”
SIAM J. Optim.
,
38
, pp.
431
446
.
46.
Zhang
,
B.
, and
Zhu
,
Z.
,
2017
, “
A Primal-Dual Algorithm Framework for Convex Saddle-Point Optimization
,”
J. Inequalities Appl.
,
2017
, p.
267
.
47.
Malytsky
,
Y.
, and
Tam
,
M. K.
,
2020
, “
Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity
,”
SIAM J. Optim.
,
30
, pp.
1451
1472
.
48.
Giselsson
,
P.
, and
Boyd
,
S.
,
2017
, “
Linear Convergence and Metric Selection for Douglas-Rachford Splitting and Admm
,”
IEEE Trans. Auto. Control
,
62
, pp.
532
544
.
49.
Lin
,
T.
,
Ma
,
S.
, and
Zhang
,
S.
,
2015
, “
On the Global Linear Convergence of the ADMM With Multiblock Variables
,”
SIAM J. Optim.
,
25
, pp.
1478
1497
.
50.
Minty
,
O. J.
,
1962
, “
Monotone (Nonlinear) Operators in Hilbert Space
,”
Duke Math. J.
,
29
(
3
), pp.
341
346
.
51.
Rockafellar
,
R. T.
,
1976
, “
Monotone Operators and the Proximal Point Algorithm
,”
SIAM J. Control Optim.
,
14
, pp.
877
898
.
52.
Moreau
,
J.-J.
,
1962
, “
Fonctions Convexes Duales Et Points Proximaux Dans Un Espace Hilbertian
,”
C. R. Acad. Sci. Paris
,
1962
, pp.
2897
2899
.
53.
Rockafellar
,
R. T.
,
1970
, “
On the Maximal Monotonicity of Subdifferential Mappings
,”
Pacific J. Math.
,
33
, pp.
209
216
.
54.
Rudin
,
W.
,
1991
,
LATE X: Functional Analysis
,
McGraw Hill
,
Singapore
.
55.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1985
,
Matrix Analysis
,
Cambridge University Press
,
New York
.
56.
Bertsekas
,
D.
,
Nedić
,
A.
, and
Ozdaglar
,
A.
,
2003
,
Convex Analysis and Optimization
,
Athena Scientific
,
Belmont, MA
.
57.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
New York
.
58.
Alaviani
,
S. S.
,
Kelkar
,
A. G.
, and
Vaidya
,
U.
,
2022
, “
A Fully Parallel Distributed Algorithm for Non-Smooth Convex Optimization With Coupled Constraints: Application to Linear Algebraic Equations
,”
American Control Conference
,
Atlanta, GA
,
June 8–10
, pp.
920
925
.
59.
Lion
,
P. L.
, and
Mercier
,
B.
,
1979
, “
Splitting Algorithms for the Sum of Two Nonlinear Operators
,”
SIAM J. Numer. Anal.
,
16
, pp.
964
979
.
60.
Bauschke
,
H. H.
,
Noll
,
D.
, and
Phan
,
H. M.
,
2015
, “
Linear and Strong Convergence of Algorithms Involving Averaged Nonexpansive Operators
,”
J. Math. Anal. Appl.
,
421
, pp.
1
20
.
You do not currently have access to this content.