Abstract

In manufacturing companies, assembly is an essential process to obtain the final product. The life cycle of an assembly product depends on various production strategies, e.g., resource allocation, rework decision, selection strategy, etc. In this regard, achieving a reliable assembly product commence with engineering a comprehensive design plan which can mitigate various uncertainties a company can face. The counteraction of uncertainties can be altered by introducing a set of tolerances into the design of the components. Tolerances define a practical margin on components design without downgrading the required performance of products. Thus, producers are confronted with high-quality requirements, cost pressure, and a rising number of demands. On these bases, this paper aims at modeling a statistical framework for a set of production strategies, including resource allocation (as a decision to assign practical resources to components) and reworking decision (as a decision to improve components’ conformity rate). Moreover, a generic simulation and surrogate approach are established to evaluate the performance of the assembled product. Within this approach, simulation and surrogate models can be used to investigate a variety of deviations over components’ geometries within the process deviation domain and deploy reworking decision. Ultimately, a modular costing system is developed, and a genetic algorithm is adapted to locate optimal solutions. In addition, the applicability of the statistical model is studied on an assembly product.

References

1.
Hong
,
Y.
, and
Chang
,
T.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
.
2.
Dantan
,
J.-Y.
,
Bruyere
,
J.
,
Vincent
,
J.-P.
, and
Bigot
,
R.
,
2008
, “
Vectorial Tolerance Allocation of Bevel Gear by Discrete Optimization
,”
Mech. Mach. Theory
,
43
(
11
), pp.
1478
1494
.
3.
Etienne
,
A.
,
Dantan
,
J.-Y.
,
Qureshi
,
J.
, and
Siadat
,
A.
,
2008
, “
Variation Management by Functional Tolerance Allocation and Manufacturing Process Selection
,”
Int. J. Interact. Des. Manuf.
,
2
(
4
), pp.
207
218
.
4.
Andolfatto
,
L.
,
Thiébaut
,
F.
,
Lartigue
,
C.
, and
Douilly
,
M.
,
2014
, “
Quality-and Cost-Driven Assembly Technique Selection and Geometrical Tolerance Allocation for Mechanical Structure Assembly
,”
J. Manuf. Syst.
,
33
(
1
), pp.
103
115
.
5.
Chase
,
K. W.
,
Greenwood
,
W. H.
,
Loosli
,
B. G.
, and
Hauglund
,
L. F.
,
1990
, “
Least Cost Tolerance Allocation for Mechanical Assemblies With Automated Process Selection
,”
Manuf. Rev.
,
3
(
1
), pp.
49
59
.
6.
Chou
,
C.-Y.
, and
Chang
,
C.-L.
,
2001
, “
Minimum-Loss Assembly Tolerance Allocation by Considering Product Degradation and Time Value of Money
,”
Int. J. Adv. Manuf. Technol.
,
17
(
2
), pp.
139
146
.
7.
Etienne
,
A.
,
Dantan
,
J.-Y.
,
Siadat
,
A.
, and
Martin
,
P.
,
2009
, “
Activity-Based Tolerance Allocation (ABTA)–Driving Tolerance Synthesis by Evaluating Its Global Cost
,”
Int. J. Prod. Res.
,
47
(
18
), pp.
4971
4989
.
8.
Walter
,
M.
,
Spruegel
,
T.
, and
Wartzack
,
S.
,
2015
, “
Least Cost Tolerance Allocation for Systems With Time-Variant Deviations
,”
Procedia CIRP
,
27
, pp.
1
9
.
9.
Yeo
,
S.
,
Ngoi
,
B.
, and
Chen
,
H.
,
1998
, “
Process Sequence Optimization Based on a New Cost–Tolerance Model
,”
J. Intell. Manuf.
,
9
(
1
), pp.
29
37
.
10.
Zhang
,
Y.
, and
Li
,
M.
,
2018
, “
Robust Tolerance Optimization for Internal Combustion Engines Under Parameter and Model Uncertainties Considering Metamodeling Uncertainty From Gaussian Processes
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041011
.
11.
Khodaygan
,
S.
,
2019
, “
A Multiple Objective Framework for Optimal Asymmetric Tolerance Synthesis of Mechanical Assemblies With Degrading Components
,”
Int. J. Adv. Manuf. Technol.
,
100
(
9–12
), pp.
2177
2205
.
12.
Singh
,
P.
,
Jain
,
P.
, and
Jain
,
S.
,
2004
, “
A Genetic Algorithm-Based Solution to Optimal Tolerance Synthesis of Mechanical Assemblies With Alternative Manufacturing Processes: Focus on Complex Tolerancing Problems
,”
Int. J. Prod. Res.
,
42
(
24
), pp.
5185
5215
.
13.
Sivakumar
,
K.
,
Balamurugan
,
C.
, and
Ramabalan
,
S.
,
2012
, “
Evolutionary Multi-Objective Concurrent Maximisation of Process Tolerances
,”
Int. J. Prod. Res.
,
50
(
12
), pp.
3172
3191
.
14.
Rezaei Aderiani
,
A.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
Developing a Selective Assembly Technique for Sheet Metal Assemblies
,”
Int. J. Prod. Res.
,
57
(
22
), pp.
7174
7188
.
15.
Hallmann
,
M.
,
Schleich
,
B.
, and
Wartzack
,
S.
,
2020
, “
How to Consider Over-Constrained Assemblies With Gaps in Tolerance-Cost Optimization?
,”
Procedia CIRP
,
92
, pp.
88
93
.
16.
Zhao
,
Q.
,
Li
,
T.
,
Cao
,
Y.
,
Yang
,
J.
, and
Jiang
,
X.
,
2020
, “
A Computer-Aided Tolerance Specification Method Based on Multiple Attributes Decision-Making
,”
Int. J. Adv. Manuf. Technol
,
111
(
5–6
), pp.
1735
1750
.
17.
Franz
,
M.
,
Schleich
,
B.
, and
Wartzack
,
S.
,
2021
, “
Tolerance Management During the Design of Composite Structures Considering Variations in Design Parameters
,”
Int. J. Adv. Manuf. Technol.
,
113
(
5–6
), pp.
1753
1770
.
18.
Armillotta
,
A.
,
2022
, “
An Extended Form of the Reciprocal-Power Function for Tolerance Allocation
,”
Int. J. Adv. Manuf. Technol.
,
119
(
11–12
), pp.
8091
8104
.
19.
Tabar
,
R. S.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2022
, “
Efficient Joining Sequence Variation Analysis of Stochastic Batch Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
040905
.
20.
Tlija
,
M.
,
Korbi
,
A.
,
Louhichi
,
B.
, and
Tahan
,
A.
,
2023
, “
A Computer-Aided Design-Based Tolerance Analysis of Assemblies With Form Defects and Deformations of Nonrigid Parts
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021001
.
21.
Bjørke
,
Ø
,
1989
,
Computer-Aided Tolerancing
,
ASME Press
,
New York
.
22.
Irani
,
S. A.
,
Mittal
,
R. O.
, and
Lehtihet
,
E. A.
,
2007
, “
Tolerance Chart Optimization
,”
Int. J. Prod. Res.
,
27
(
9
), pp.
1531
1552
.
23.
Zhang
,
C.
, and
Wang
,
H.-P.
,
1998
, “
Robust Design of Assembly and Machining Tolerance Allocations
,”
IIE Trans.
,
30
(
1
), pp.
17
29
.
24.
Feng
,
C.-X.
, and
Kusiak
,
A.
,
1997
, “
Robust Tolerance Design With the Integer Programming Approach
.
ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
603
610
.
25.
Vasseur
,
H.
,
Kurfess
,
T.
, and
Cagan
,
J.
,
1997
, “
Use of a Quality Loss Function to Select Statistical Tolerances
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
410
416
.
26.
Speckhart
,
F. H.
,
1972
, “
Calculation of Tolerance Based on a Minimum Cost Approach
,”
ASME J. Eng. Ind.
,
94
(
2
), pp.
447
453
.
27.
Spotts
,
M. F.
,
1973
, “
Allocation of Tolerances to Minimize Cost of Assembly
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
762
764
.
28.
Sutherland
,
G.
, and
Roth
,
B.
,
1975
, “
Mechanism Design: Accounting for Manufacturing Tolerances and Costs in Function Generating Problems
,”
ASME J. Eng. Ind.
,
97
(
1
), pp.
283
286
.
29.
Chase
,
K. W.
, and
Greenwood
,
W. H.
,
1988
, “
Design Issues in Mechanical Tolerance Analysis
,”
Manuf. Rev.
,
1
(
1
), pp.
50
59
.
30.
Dong
,
Z.
,
Hu
,
W.
, and
Xue
,
D.
,
1994
, “
New Production Cost-Tolerance Models for Tolerance Synthesis
,”
ASME J. Eng. Ind.
,
116
(
2
), pp.
199
206
.
31.
Michael
,
W.
, and
Siddall
,
J.
,
1981
, “
The Optimization Problem With Optimal Tolerance Assignment and Full Acceptance
,”
ASME J. Mech. Des.
,
103
(
4
), pp.
842
848
.
32.
Lin
,
Z.-C.
, and
Chang
,
D.-Y.
,
2002
, “
Cost-Tolerance Analysis Model Based on a Neural Networks Method
,”
Int. J. Prod. Res.
,
40
(
6
), pp.
1429
1452
.
33.
Ramesh
,
R.
,
Jerald
,
J.
,
Page
,
T.
, and
Arunachalam
,
S.
,
2009
, “
Concurrent Tolerance Allocation Using an Artificial Neural Network and Continuous Ant Colony Optimisation
,”
Int. J. Des. Eng.
,
2
(
1
), pp.
1
25
.
34.
Armillotta
,
A.
,
2020
, “
Selection of Parameters in Cost-Tolerance Functions: Review and Approach
,”
Int. J. Adv. Manuf. Technol.
,
108
(
1–2
), pp.
167
182
.
35.
Hallmann
,
M.
,
Schleich
,
B.
, and
Wartzack
,
S.
,
2020
, “
From Tolerance Allocation to Tolerance-Cost Optimization: A Comprehensive Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
107
(
11
), pp.
4859
4912
.
36.
Saravanan
,
A.
,
Jerald
,
J.
, and
Rani
,
A. D. C.
,
2020
, “
An Explicit Methodology for Manufacturing Cost–Tolerance Modeling and Optimization Using the Neural Network Integrated With the Genetic Algorithm
,”
AI EDAM
,
34
(
3
), pp.
430
443
.
37.
Wu
,
H.
,
Li
,
X.
,
Sun
,
F.
,
Zheng
,
H.
, and
Zhao
,
Y.
,
2021
, “
Optimization Design Method of Machine Tool Static Geometric Accuracy Using Tolerance Modeling
,”
Int. J. Adv. Manuf. Technol.
,
118
(
5–6
), pp.
1793
1809
.
38.
Khezri
,
A.
,
Homri
,
L.
,
Etienne
,
A.
,
Dantan
,
J.-Y.
, and
Lanza
,
G.
,
2022
, “
A Framework for Integration of Resource Allocation and Reworking Concept Into Design Optimisation Problem
,”
IFAC-PapersOnLine
,
55
(
10
), pp.
1037
1042
.
39.
Khezri
,
A.
,
Homri
,
L.
,
Etienne
,
A.
, and
Dantan
,
J.-Y.
,
2022
, “
An Integrated Resource Allocation and Tolerance Allocation Optimization: A Statistical-Based Dimensional Tolerancing
,”
Procedia CIRP
,
114
, pp.
88
93
.
40.
Ferrer
,
G.
, and
Ayres
,
R. U.
,
2000
, “
The Impact of Remanufacturing in the Economy
,”
Ecol. Econ.
,
32
(
3
), pp.
413
429
.
41.
Lee
,
Y.-H.
,
Wei
,
C.-C.
,
Chen
,
C.-B.
, and
Tsai
,
C.-H.
,
2000
, “
Minimization of Scrap and Rework Costs by Process Tolerances Allocation
,”
Eng. Optim.
,
32
(
5
), pp.
619
633
.
42.
Shin
,
S.
, and
Cho
,
B.
,
2007
, “
Integrating a Bi-Objective Paradigm to Tolerance Optimization
,”
Int. J. Prod. Res.
,
45
(
23
), pp.
5509
5525
.
43.
Moskowitz
,
H.
,
2010
, “
The Partial Information Case for Multivariate Tolerance Design Using Scrap or Rework Costs
,”
Int. J. Prod. Res.
,
37
(
1
), pp.
139
154
.
44.
Mustajib
,
M. I.
, and
Irianto
,
D.
,
2011
, “
An Integrated Model for Process Selection and Quality Improvement in Multi-Stage Processes
,”
J. Adv. Manuf. Syst.
,
09
(
01
), pp.
31
48
.
45.
Mustajib
,
M.
,
2012
, “
Concurrent Engineering of Tolerance Synthesis and Process Selection for Products With Multiple Quality Characteristics Considering Process Capability
,”
Makara J. Technol.
,
16
(
1
), pp.
7
14
.
46.
Sofiana
,
A.
,
Rosyidi
,
C. N.
, and
Pujiyanto
,
E.
,
2019
, “
Product Quality Improvement Model Considering Quality Investment in Rework Policies and Supply Chain Profit Sharing
,”
J. Ind. Eng. Int.
,
15
(
4
), pp.
637
649
.
47.
Liu
,
D.
,
Isik
,
T.
, and
Rae Cho
,
B.
,
2021
, “
Double-Tolerance Design for Manufacturing Systems
,”
IISE Trans.
,
54
(
1
), pp.
1
12
.
48.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
49.
Anselmetti
,
B.
,
2006
, “
Generation of Functional Tolerancing Based on Positioning Features
,”
Comput.-Aided Des.
,
38
(
8
), pp.
902
919
.
50.
Goka
,
E.
,
Homri
,
L.
,
Beaurepaire
,
P.
, and
Dantan
,
J.-Y.
,
2019
, “
Statistical Tolerance Analysis of Over-Constrained Mechanical Assemblies With Form Defects Considering Contact Types
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021010
.
You do not currently have access to this content.