Abstract

Modeling and characterizing high-dimensional aerodynamic pressures, on the elevator in the hoistway, is very challenging. An accurate model is helpful to understand and analyze the pressure characteristics, which is a vital consideration in the design of a competitive elevator. The current full-order models are usually governed by the Navier–Stokes equations and have low computational efficiency. A reduced-order model is thus necessary to improve computational efficiency. This work aims at investigating two data-driven approaches, for modeling and characterizing the aerodynamic pressures, i.e., proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) that are able to extract temporal–spatial structures from the data. A three-dimensional (3D) model of the realistic elevator is first built and simulation data of the aerodynamic pressures during the motion of the elevator in the hoistway is generated via computational fluid dynamics (CFD). Then, POD and DMD are employed to analyze the simulation data. It is found that through clustering techniques and since there exist local aerodynamic pressure pulses during the operation of the elevator, the aerodynamic pressure on the elevator has some distinct patterns. Therefore, cluster-based POD and DMD are further employed in the analysis. The results demonstrate that the cluster-based POD and DMD can achieve lower reconstruction errors than POD and DMD.

References

1.
Qiao
,
S.
,
Zhang
,
R.
,
He
,
Q.
, and
Zhang
,
L.
,
2019
, “
Theoretical Modeling and Sensitivity Analysis of the Car-Induced Unsteady Airflow in Super High-Speed Elevator
,”
J. Wind Eng. Ind. Aerodyn.
,
188
, pp.
280
293
.
2.
Shi
,
L.
,
Liu
,
Y.
,
Jin
,
S.
, and
Cao
,
Z.
,
2007
, “
Numerical Simulation of Unsteady Turbulent Flow Induced by Two-Dimensional Elevator Car and Counter Weight System
,”
J. Hydrodyn.
,
19
(
6
), pp.
720
725
.
3.
Chen
,
Y.
,
Yang
,
L.
,
Fu
,
Z.
,
Chen
,
L.
, and
Chen
,
J.
,
2018
, “
Gas Flow Behavior and Flow Transition in Elevator Shafts Considering Elevator Motion During a Building Fire
,”
Build. Simul.
,
11
(
4
), pp.
765
771
.
4.
Zhou
,
L.
,
Tse
,
K. T.
,
Hu
,
G.
, and
Li
,
Y.
,
2020
, “
Higher Order Dynamic Mode Decomposition of Wind Pressures on Square Buildings
,”
J. Wind Eng. Ind. Aerodyn.
,
211
, p.
104545
.
5.
Li
,
C. Y.
,
Tse
,
T. K. T.
, and
Hu
,
G.
,
2020
, “
Dynamic Mode Decomposition on Pressure Flow Field Analysis: Flow Field Reconstruction, Accuracy, and Practical Significance
,”
J. Wind Eng. Ind. Aerodyn.
,
205
, p.
104278
.
6.
Lumley
,
J. L.
,
1970
,
Stochastic Tools in Turbulence
,
12
,
Elsevier
,
New York
.
7.
Hall
,
K. C.
,
1994
, “
Eigenanalysis of Unsteady Flows About Airfoils, Cascades, and Wings
,”
AIAA J.
,
32
(
12
), pp.
2426
2432
.
8.
Dowell
,
E. H.
,
1996
, “
Eigenmode Analysis in Unsteady Aerodynamics: Reduced-Order Models
,”
AIAA J.
,
34
(
8
), pp.
1578
1583
.
9.
Andrianne
,
T.
,
Ligot
,
J.
, and
Dimitriadis
,
G.
,
2009
, “Proper Orthogonal Decomposition of Unsteady Aerodynamic Flows,” December, 16, 2009, https://www.ltas-aea.ulg.ac.be/cms/ uploads/reports/PIVreport.pdf.
10.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
11.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.
12.
Rowley
,
C. W.
,
2005
, “
Model Reduction for Fluids, Using Balanced Proper Orthogonal Decomposition
,”
Int. J. Bifurcat. Chaos
,
15
(
3
), pp.
997
1013
.
13.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.
14.
Chen
,
K. K.
,
Tu
,
J. H.
, and
Rowley
,
C. W.
,
2012
, “
Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
,”
J. Nonlinear Sci.
,
22
(
6
), pp.
887
915
.
15.
Wynn
,
A.
,
Pearson
,
D. S.
,
Ganapathisubramani
,
B.
, and
Goulart
,
P. J.
,
2013
, “
Optimal Mode Decomposition for Unsteady Flows
,”
J. Fluid Mech.
,
733
, pp.
473
503
.
16.
Jovanović
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluids
,
26
(
2
), p.
024103
.
17.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.
18.
Brunton
,
S. L.
,
Proctor
,
J. L.
,
Tu
,
J. H.
, and
Kutz
,
J. N.
,
2015
, “
Compressed Sensing and Dynamic Mode Decomposition
,”
J. Comput. Dyn.
,
2
(
2
), pp.
165
191
.
19.
Kutz
,
J. N.
,
Fu
,
X.
, and
Brunton
,
S. L.
,
2016
, “
Multiresolution Dynamic Mode Decomposition
,”
SIAM J. Appl. Dyn. Syst.
,
15
(
2
), pp.
713
735
.
20.
Hemati
,
M. S.
,
Williams
,
M. O.
, and
Rowley
,
C. W.
,
2014
, “
Dynamic Mode Decomposition for Large and Streaming Datasets
,”
Phys. Fluids
,
26
(
11
), p.
111701
.
21.
Brunton
,
B. W.
,
Johnson
,
L. A.
,
Ojemann
,
J. G.
, and
Kutz
,
J. N.
,
2016
, “
Extracting Spatial-Temporal Coherent Patterns in Large-Scale Neural Recordings Using Dynamic Mode Decomposition
,”
J. Neurosci. Methods
,
258
, pp.
1
15
.
22.
Dawson
,
S. T. M.
,
Hemati
,
M. S.
,
Williams
,
M. O.
, and
Rowley
,
C. W.
,
2016
, “
Characterizing and Correcting for the Effect of Sensor Noise in the Dynamic Mode Decomposition
,”
Exp. Fluids
,
57
(
3
), pp.
1
19
.
23.
Kramer
,
B.
,
Grover
,
P.
,
Boufounos
,
P.
,
Nabi
,
S.
, and
Benosman
,
M.
,
2017
, “
Sparse Sensing and DMD-Based Identification of Flow Regimes and Bifurcations in Complex Flows
,”
SIAM J. Appl. Dyn. Syst.
,
16
(
2
), pp.
1164
1196
.
24.
Kaptanoglu
,
A. A.
,
Morgan
,
K. D.
,
Hansen
,
C. J.
, and
Brunton
,
S. L.
,
2020
, “
Characterizing Magnetized Plasmas With Dynamic Mode Decomposition
,”
Phys. Plasmas
,
27
(
3
), p.
032108
.
25.
Kaiser
,
E.
,
Noack
,
B. R.
,
Cordier
,
L.
,
Spohn
,
A.
,
Segond
,
M.
,
Abel
,
M.
,
Daviller
,
G.
,
Östh
,
J.
,
Krajnović
,
S.
, and
Niven
,
R. K.
,
2014
, “
Cluster-Based Reduced-Order Modelling of a Mixing Layer
,”
J. Fluid Mech.
,
754
, pp.
365
414
.
26.
Callaham
,
J. L.
,
Koch
,
J. V.
,
Brunton
,
B. W.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2021
, “
Learning Dominant Physical Processes With Data-Driven Balance Models
,”
Nat. Commun.
,
12
(
1
), p.
1016
.
27.
Wang
,
R.
,
Walters
,
R.
, and
Yu
,
R.
,
2020
, “
Incorporating Symmetry Into Deep Dynamics Models for Improved Generalization
,”
International Conference on Learning Representations
, preprint arXivhttps://arxiv.org/abs/2002.03061.
28.
Liu
,
X.
,
Zhu
,
X. H.
,
Qiu
,
P.
, and
Chen
,
W.
,
2012
, “
A Correlation-Matrix-Based Hierarchical Clustering Method for Functional Connectivity Analysis
,”
J. Neurosci. Methods
,
211
(
1
), pp.
94
102
.
29.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
391
421
.
30.
Wu
,
Z.
,
Fan
,
F.
,
Xiao
,
R.
, and
Yu
,
L.
,
2020
, “
The Substructuring-Based Topology Optimization for Maximizing the First Eigenvalue of Hierarchical Lattice Structure
,”
Int. J. Numer. Methods Eng.
,
121
(
13
), pp.
2964
2978
.
You do not currently have access to this content.