Abstract

Generating novel and useful concepts is essential during the early design stage to explore a large variety of design opportunities, which usually requires advanced design thinking ability and a wide range of knowledge from designers. Growing works on computer-aided tools have explored the retrieval of knowledge and heuristics from design data. However, they only provide stimuli to inspire designers from limited aspects. This study explores the recent advance of the natural language generation (NLG) technique in the artificial intelligence (AI) field to automate the early stage design concept generation. Specifically, a novel approach utilizing the generative pretrained transformer (GPT) is proposed to leverage the knowledge and reasoning from textual data and transform them into new concepts in understandable language. Three concept generation tasks are defined to leverage different knowledge and reasoning: domain knowledge synthesis, problem-driven synthesis, and analogy-driven synthesis. The experiments with both human and data-driven evaluation show good performance in generating novel and useful concepts.

References

1.
Tschimmel
,
K.
,
2012
, “
Design Thinking As an Effective Toolkit for Innovation
,”
ISPIM Conference Proceedings
,
Barcelona, Spain
,
June 17–20
, p.
1
.
2.
Purcell
,
A. T.
, and
Gero
,
J. S.
,
1996
, “
Design and Other Types of Fixation
,”
Des. Stud.
,
17
(
4
), pp.
363
383
.
3.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.
4.
Viswanathan
,
V.
,
Tomko
,
M.
, and
Linsey
,
J.
,
2016
, “
A Study on the Effects of Example Familiarity and Modality on Design Fixation
,”
AI EDAM
,
30
(
2
), pp.
171
184
.
5.
Nishimoto
,
K.
,
Sumi
,
Y.
, and
Mase
,
K.
,
1996
, “
Toward an Outsider Agent for Supporting a Brainstorming Session—An Information Retrieval Method From a Different Viewpoint
,”
Knowl.-Based Syst.
,
9
(
6
), pp.
377
384
.
6.
Buzan
,
T.
,
1996
,
The Mind Map Book: How to Use Radiant Thinking to Maximize Your Brain's Untapped Potential
,
Penguin Books
,
New York, NY
.
7.
Altshuller
,
G.
,
1999
,
TRIZ, Systematic Innovation and Technical Creativity
,
Technical Innovation Center
,
Worcester, MA
.
8.
Altshuller
,
G.
,
Shulyak
,
L.
,
Rodman
,
S.
, and
Fedoseev
,
U.
,
1998
,
40 Principles: TRIZ Keys to Innovation
, Vol.
1
,
Technical Innovation Center Inc.
,
Worcester, MA
.
9.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2019
, “
Computer-Aided Design Ideation Using InnoGPS
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, Paper No.
V02AT03A011
.
10.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowl.-Based Syst.
,
218
, p.
106873
.
11.
Luo
,
J.
,
2022
, “
Data-Driven Innovation: What Is It
,”
IEEE Trans. Eng. Manage.
, pp.
1
7
.
12.
Ilevbare
,
I. M.
,
Probert
,
D.
, and
Phaal
,
R.
,
2013
, “
A Review of TRIZ, and Its Benefits and Challenges in Practice
,”
Technovation
,
33
(
2–3
), pp.
30
37
.
13.
Yilmaz
,
S.
,
Daly
,
S. R.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2016
, “
Evidence-Based Design Heuristics for Idea Generation
,”
Des. Stud.
,
46
, pp.
95
124
.
14.
Jin
,
X.
, and
Dong
,
H.
,
2020
, “
New Design Heuristics in the Digital Era
,”
Proceedings of the Design Society: DESIGN Conference
,
Virtual
,
Oct. 26–29
, pp.
607
616
.
15.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
TechNet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
.
16.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2021
, “
Idea Generation With Technology Semantic Network
,”
AI EDAM
,
35
(
3
), pp.
265
283
.
17.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
18.
Wood
,
K. L.
, and
Greer
,
J. L.
,
2001
, “Function-Based Synthesis Methods in Engineering Design,”
Formal Engineering Design Synthesis
,
E.
Antonsson
, and
J.
Cagan
, eds.,
Cambridge University Press
,
Cambridge, MA
, pp.
170
227
.
19.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2008
, “
Using a Design Repository to Drive Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
014502
.
20.
Sridharan
,
P.
, and
Campbell
,
M. I.
,
2005
, “
A Study on the Grammatical Construction of Function Structures
,”
AI EDAM
,
19
(
3
), pp.
139
160
.
21.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2009
, “
Automated Synthesis of Electromechanical Design Configurations From Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), pp.
83
104
.
22.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2017
, “
Automated Graph Grammar Generation for Engineering Design With Frequent Pattern Mining
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, Paper No.
V02AT03A006
.
23.
Liu
,
Y. C.
,
Chakrabarti
,
A.
, and
Bligh
,
T.
,
2000
, “A Computational Framework for Concept Generation and Exploration in Mechanical Design,”
Artificial Intelligence in Design’00
,
J.S.
Gero
, ed.,
Springer Netherlands
,
Dordrecht
, pp.
499
519
.
24.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
,
2001
, “
A Scheme for Functional Reasoning in Conceptual Design
,”
Des. Stud.
,
22
(
6
), pp.
493
517
.
25.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
26.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
27.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, Paper No.
V02AT03A013
.
28.
Yilmaz
,
E.
, and
German
,
B.
,
2020
, “
Conditional Generative Adversarial Network Framework for Airfoil Inverse Design
,”
AIAA Aviation 2020 Forum
,
Virtual
,
June 15–19
, p.
3185
.
29.
Li
,
J.
,
Xu
,
K.
,
Chaudhuri
,
S.
,
Yumer
,
E.
,
Zhang
,
H.
, and
Guibas
,
L.
,
2017
, “
Grass: Generative Recursive Autoencoders for Shape Structures
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
14
.
30.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3D Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
31.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
32.
Shah
,
J. J.
,
Vargas-Hernandez
,
N. O. E.
,
Summers
,
J. D.
, and
Kulkarni
,
S.
,
2001
, “
Collaborative Sketching (C-Sketch)—An Idea Generation Technique for Engineering Design
,”
J. Creat. Behav.
,
35
(
3
), pp.
168
198
.
33.
Krasadakis
,
G.
,
2020
, “Brainstorming,”
The Innovation Mode
,
Springer
,
Cham
, pp.
141
146
.
34.
Bonnardel
,
N.
, and
Didier
,
J.
,
2020
, “
Brainstorming Variants to Favor Creative Design
,”
Appl. Ergon.
,
83
, p.
102987
.
35.
Wang
,
H. C.
,
Li
,
T. Y.
,
Rosé
,
C. P.
,
Huang
,
C. C.
, and
Chang
,
C. Y.
,
2006
, “
VIBRANT: A Brainstorming Agent for Computer Supported Creative Problem Solving
,”
International Conference on Intelligent Tutoring Systems
,
Springer
,
Berlin/Heidelberg
, pp.
787
789
.
36.
Lee
,
B.
,
Feldman
,
B.
, and
Fu
,
K.
,
2022
, “
Speech2Mindmap: Testing the Accuracy of Unsupervised Automatic Mindmapping Technology With Speech Recognition
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021401
.
37.
Song
,
B.
,
Zurita
,
N. F. S.
,
Gyory
,
J. T.
,
Zhang
,
G.
,
McComb
,
C.
,
Cagan
,
J.
,
Stump
,
G.
, et al
,
2022
, “
Decoding the Agility of Artificial Intelligence-Assisted Human Design Teams
,”
Des. Stud.
,
79
, p.
101094
.
38.
Song
,
B.
,
Soria Zurita
,
N. F.
,
Nolte
,
H.
,
Singh
,
H.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
When Faced With Increasing Complexity: The Effectiveness of Artificial Intelligence Assistance for Drone Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021701
.
39.
Gyory
,
J. T.
,
Soria Zurita
,
N. F.
,
Martin
,
J.
,
Balon
,
C.
,
McComb
,
C.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2022
, “
Human Versus Artificial Intelligence: A Data-Driven Approach to Real-Time Process Management During Complex Engineering Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021405
.
40.
Fargnoli
,
M.
,
Rovida
,
E.
, and
Troisi
,
R.
,
2006
, “
The Morphological Matrix: Tool for the Development of Innovative Design Solutions
,”
4th International Conference on Axiomatic design, ICAD
,
Florence, Italy
,
June 13–16
, pp.
1
7
.
41.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.
42.
Jiang
,
S.
,
Hu
,
J.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Data-Driven Design-By-Analogy: State-of-the-Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020801
.
43.
He
,
Y.
,
Camburn
,
B.
,
Liu
,
H.
,
Luo
,
J.
,
Yang
,
M.
, and
Wood
,
K.
,
2019
, “
Mining and Representing the Concept Space of Existing Ideas for Directed Ideation
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121101
.
44.
Siddharth
,
L.
,
Blessing
,
L.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Engineering Knowledge Graph From Patent Database
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021008
.
45.
Han
,
J.
,
Sarica
,
S.
,
Shi
,
F.
, and
Luo
,
J.
,
2022
, “
Semantic Networks for Engineering Design: State of the Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020802
.
46.
Sarica
,
S.
,
Han
,
J.
, and
Luo
,
J.
,
2023
, “
Design Representation as Semantic Networks
,”
Comput. Ind.
,
144
, p.
103791
.
47.
Vattam
,
S.
, and
Goel
,
A.
,
2013
, “
An Information Foraging Model of Interactive Analogical Retrieval
,”
Proceedings of the Annual Meeting of the Cognitive Science Society
,
Berlin, Germany
,
July 31–Aug. 3
.
48.
Kruiper
,
R.
,
Vincent
,
J. F.
,
Abraham
,
E.
,
Soar
,
R. C.
,
Konstas
,
I.
,
Chen-Burger
,
J.
, and
Desmulliez
,
M. P.
,
2018
, “
Towards a Design Process for Computer-Aided Biomimetics
,”
Biomimetics
,
3
(
3
), p.
14
.
49.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A. K.
, and
Yen
,
J.
,
2011
, “DANE: Fostering Creativity in and through Biologically Inspired Design,”
Design Creativity 2010
,
T.
Taura
, and
Y.
Nagai
, eds.,
Springer
,
London
, pp.
115
122
.
50.
Deldin
,
J. M.
, and
Schuknecht
,
M.
,
2014
, “The AskNature Database: Enabling Solutions in Biomimetic Design,”
Biologically Inspired Design
,
A.
Goel
,
D.
McAdams
, and
R.
Stone
, eds.,
Springer
,
London
, pp.
17
27
.
51.
Goldschmidt
,
G.
, and
Smolkov
,
M.
,
2006
, “
Variances in the Impact of Visual Stimuli on Design Problem Solving Performance
,”
Des. Stud.
,
27
(
5
), pp.
549
569
.
52.
Ahmed
,
S.
, and
Boelskifte
,
P.
,
2006
, “
Investigations of Product Design Engineering Students Intentions and a Users Perception of Product Character
,”
Proceedings of the NordDesign 2006 Conference
,
Reykjavik, Iceland
,
Aug. 16–18
.
53.
Han
,
J.
,
Forbes
,
H.
,
Shi
,
F.
,
Hao
,
J.
, and
Schaefer
,
D.
,
2020
, “
A Data-Driven Approach for Creative Concept Generation and Evaluation
,”
Proceedings of the Design Society: DESIGN Conference
,
Virtual
,
Oct. 26–29
, Cambridge University Press, Vol. 1, pp.
167
176
.
54.
Jiang
,
S.
,
Luo
,
J.
,
Ruiz-Pava
,
G.
,
Hu
,
J.
, and
Magee
,
C. L.
,
2021
, “
Deriving Design Feature Vectors for Patent Images Using Convolutional Neural Networks
,”
ASME J. Mech. Des.
,
143
(
6
), p.
021008
.
55.
Wang
,
L.
,
Shen
,
W.
,
Xie
,
H.
,
Neelamkavil
,
J.
, and
Pardasani
,
A.
,
2002
, “
Collaborative Conceptual Design—State of the Art and Future Trends
,”
Comput.-Aided Des.
,
34
(
13
), pp.
981
996
.
56.
Kvan
,
T.
,
2000
, “
Collaborative Design: What Is it?
,”
Autom. Constr.
,
9
(
4
), pp.
409
415
.
57.
Vlah
,
D.
,
Žavbi
,
R.
, and
Vukašinović
,
N.
,
2020
, “
Evaluation of Topology Optimization and Generative Design Tools As Support for Conceptual Design
,”
Proceedings of the Design Society: DESIGN Conference
,
Virtual
,
Oct. 26–29
, pp.
451
460
.
58.
Querin
,
O. M.
,
Victoria
,
M.
,
Alonso
,
C.
,
Loyola
,
R. A.
, and
Montrull
,
P. M.
,
2017
,
Topology Design Methods for Structural Optimization
,
Elsevier
,
London
.
59.
Chau
,
H. H.
,
Chen
,
X.
,
McKay
,
A.
, and
Pennington
,
A. D.
,
2004
, “Evaluation of a 3D Shape Grammar Implementation,”
Design Computing and cognition’04
,
J.S.
Gero
, ed.,
Springer Netherlands
,
Dordrecht
, pp.
357
376
.
60.
Hoisl
,
F.
, and
Shea
,
K.
,
2011
, “
An Interactive, Visual Approach to Developing and Applying Parametric Three-Dimensional Spatial Grammars
,”
AI EDAM
,
25
(
4
), pp.
333
356
.
61.
Reid
,
T. N.
,
Gonzalez
,
R. D.
, and
Papalambros
,
P. Y.
,
2010
, “
Quantification of Perceived Environmental Friendliness for Vehicle Silhouette Design
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101010
.
62.
Ren
,
Y.
,
Burnap
,
A.
, and
Papalambros
,
P.
,
2013
, “
Quantification of Perceptual Design Attributes Using a Crowd
,”
DS 75-6: Proceedings of the 19th International Conference on Engineering Design (ICED13), Design for Harmonies, Vol. 6: Design Information and Knowledge
,
Seoul, South Korea
,
Aug. 19–22
, pp.
139
148
.
63.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “Generative Adversarial Nets,”
Advances in Neural Information Processing Systems
, Vol.
27
,
Z.
Ghahramani
,
M.
Welling
,
C.
Cortes
,
N.
Lawrence
, and
K.Q.
Weinberger
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
, pp.
2672
2680
.
64.
Kingma
,
D. P.
, &
Welling
,
M.
, 2013, “
Auto-encoding Variational Bayes
,”
arXiv preprint
. arxiv.org/abs/1312.6114
65.
Siddharth
,
L.
,
Blessing
,
L.
, and
Luo
,
J.
,
2022
, “
Natural Language Processing in-and-for Design Research
,”
Des. Sci.
,
8
, p.
E21
.
66.
Gatt
,
A.
, and
Krahmer
,
E.
,
2018
, “
Survey of the State of the Art in Natural Language Generation: Core Tasks, Applications and Evaluation
,”
J. Artif. Intell. Res.
,
61
, pp.
65
170
.
67.
Lopez
,
A.
,
2008
, “
Statistical Machine Translation
,”
ACM Comput. Surv. (CSUR)
,
40
(
3
), pp.
1
49
.
68.
Ozsoy
,
M. G.
,
Alpaslan
,
F. N.
, and
Cicekli
,
I.
,
2011
, “
Text Summarization Using Latent Semantic Analysis
,”
J. Inf. Sci.
,
37
(
4
), pp.
405
417
.
69.
Li
,
Z.
,
Jiang
,
X.
,
Shang
,
L.
, and
Li
,
H.
,
2018
, “
Paraphrase Generation With Deep Reinforcement Learning
,”
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
,
Brussels, Belgium
,
Oct. 31–Nov. 4
, pp.
3865
3878
.
70.
Leppänen
,
L.
,
Munezero
,
M.
,
Granroth-Wilding
,
M.
, and
Toivonen
,
H.
,
2017
, “
Data-Driven News Generation for Automated Journalism
,”
Proceedings of the 10th International Conference on Natural Language Generation
,
Santiago de Compostela, Spain
,
Sept. 4–7
, pp.
188
197
.
71.
Wanner
,
L.
,
Bosch
,
H.
,
Bouayad-Agha
,
N.
,
Casamayor
,
G.
,
Ertl
,
T.
,
Hilbring
,
D.
,
Johansson
,
L.
, et al
,
2015
, “
Getting the Environmental Information Across: From the Web to the User
,”
Expert Syst.
,
32
(
3
), pp.
405
432
.
72.
Perera
,
R.
, and
Nand
,
P.
,
2017
, “
Recent Advances in Natural Language Generation: A Survey and Classification of the Empirical Literature
,”
Comput. Inform.
,
36
(
1
), pp.
1
32
.
73.
Duan
,
J.
,
Zhao
,
H.
,
Zhou
,
Q.
,
Qiu
,
M.
, and
Liu
,
M.
,
2020
, “
A Study of Pre-trained Language Models in Natural Language Processing
,”
2020 IEEE International Conference on Smart Cloud (Smart-Cloud)
,
Washington, DC
,
Nov. 6–8
, pp.
116
121
.
74.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł
, and
Polosukhin
,
I.
,
2017
, “Attention is All you Need,”
Advances in Neural Information Processing Systems 30 (NIPS 2017)
, Vol.
30
,
I.
Guyon
,
U.
Von Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
.
75.
Topal
,
M. O.
,
Bas
,
A.
, and
van Heerden
,
I.
,
2021
, “
Exploring Transformers in Natural Language Generation: GPT, BERT, and XLNET
,”
International Conference on Interdisciplinary Applications of AI (ICIDAAI)
,
Virtual
,
May 21–23
.
76.
Pascanu
,
R.
,
Mikolov
,
T.
, and
Bengio
,
Y.
,
2013
, “
On the Difficulty of Training Recurrent Neural Networks
,”
International Conference on Machine Learning
,
Atlanta, GA
,
June 17–19
, PMLR, pp.
1310
1318
.
77.
Brown
,
T. B.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J. D.
,
Dhariwal
,
P.
,
Neelakantan
,
A.
, et al
,
2020
, “Language Models are Few-Shot Learners,”
Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
, Vol.
33
,
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M.F.
Balcan
, and
H.
Lin
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
, pp.
1877
1901
.
78.
Radford
,
A.
,
Wu
,
J.
,
Child
,
R.
,
Luan
,
D.
,
Amodei
,
D.
, and
Sutskever
,
I.
,
2019
,
Language Models are Unsupervised Multitask Learners, Technical Report, OpenAI
.
79.
Peng
,
B.
,
Zhu
,
C.
,
Li
,
C.
,
Li
,
X.
,
Li
,
J.
,
Zeng
,
M.
, and
Gao
,
J.
,
2020
, “Few-shot Natural Language Generation for Task-Oriented Dialog,”
Findings of the Association for Computational Linguistics: EMNLP 2020
,
T.
Cohn
,
Y.
He
, and
Y.
Liu
, eds.,
Association for Computational Linguistics
,
Online
, pp.
172
182
.
80.
Amin-Nejad
,
A.
,
Ive
,
J.
, and
Velupillai
,
S.
,
2020
, “
Exploring Transformer Text Generation for Medical Dataset Augmentation
,”
Proceedings of the 12th Language Resources and Evaluation Conference
,
Marseille, France
,
May 13–15
, pp.
4699
4708
.
81.
Lee
,
J. S.
, and
Hsiang
,
J.
,
2020
, “
Patent Claim Generation by Fine-Tuning OpenAI GPT-2
,”
World Pat. Inf.
,
62
, p.
101983
.
82.
Fang
,
J.
,
2021
, “
An Application of Customized GPT-2 Text Generator for Modern Content Creators
,”
Master thesis
, https://escholarship.org/uc/item/3rd9v7xm
83.
Radford
,
A.
,
Narasimhan
,
K.
,
Salimans
,
T.
, and
Sutskever
,
I.
,
2018
,
Improving Language Understanding by Generative Pre-training, Technical Report, OpenAI
.
84.
Hinton
,
G. E.
, and
Salakhutdinov
,
R. R.
,
2006
, “
Reducing the Dimensionality of Data With Neural Networks
,”
Science
,
313
(
5786
), pp.
504
507
.
85.
Huang
,
Q.
,
Gan
,
Z.
,
Celikyilmaz
,
A.
,
Wu
,
D.
,
Wang
,
J.
, and
He
,
X.
,
2019
, “
Hierarchically Structured Reinforcement Learning for Topically Coherent Visual Story Generation
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Honolulu, HI
,
Jan. 27–Feb. 1
, Vol. 33, No. 1, pp.
8465
8472
.
86.
Devlin
,
J.
,
Chang
,
M. W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2019
, “
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
,”
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
,
Minneapolis, MN
,
June 2–7
, pp.
4171
4186
.
87.
Papineni
,
K.
,
Roukos
,
S.
,
Ward
,
T.
, and
Zhu
,
W. J.
,
2002
, “
Bleu: A Method for Automatic Evaluation of Machine Translation
,”
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics
,
Philadelphia, PA
,
July 7–12
, pp.
311
318
.
88.
Lin
,
C. Y.
,
2004
, “Rouge: A Package for Automatic Evaluation of Summaries,”
Text Summarization Branches Out
,
Association for Computational Linguistics
,
Barcelona, Spain
, pp.
74
81
.
89.
Banerjee
,
S.
, and
Lavie
,
A.
,
2005
, “
METEOR: An Automatic Metric for MT Evaluation With Improved Correlation With Human Judgments
,”
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization
,
Ann Arbor, MI
,
June 29
, pp.
65
72
.
90.
Kusner
,
M.
,
Sun
,
Y.
,
Kolkin
,
N.
, and
Weinberger
,
K.
,
2015
, “
From Word Embeddings to Document Distances
,”
International Conference on Machine Learning
,
Lille, France
,
July 7–9
, PMLR, pp.
957
966
.
91.
Zhao
,
W.
,
Peyrard
,
M.
,
Liu
,
F.
,
Gao
,
Y.
,
Meyer
,
C. M.
, and
Eger
,
S.
,
2019
, “
MoverScore: Text Generation Evaluating With Contextualized Embeddings and Earth Mover Distance
,”
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the Ninth International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
,
Hong Kong, China
,
Nov. 3–7
, pp.
563
578
.
92.
Lowe
,
R.
,
Noseworthy
,
M.
,
Serban
,
I. V.
,
Angelard-Gontier
,
N.
,
Bengio
,
Y.
, and
Pineau
,
J.
,
2017
, “
Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses
,”
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Volume 1: Long Papers
,
Vancouver, Canada
,
July 30–Aug. 4
, pp.
1116
1126
.
93.
Zhou
,
W.
, and
Xu
,
K.
,
2020
, “
Learning to Compare for Better Training and Evaluation of Open Domain Natural Language Generation Models
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
New York
,
Feb. 7–12
, Vol. 34, No. 5, pp.
9717
9724
.
94.
Bender
,
E. M.
,
Gebru
,
T.
,
McMillan-Major
,
A.
, and
Shmitchell
,
S.
,
2021
, “
On the Dangers of Stochastic Parrots: Can Language Models Be Too Big
,”
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency
,
Virtual
,
Mar. 3–10
, pp.
610
623
.
95.
Mednick
,
S.
,
1962
, “
The Associative Basis of the Creative Process
,”
Psychol. Rev.
,
69
(
3
), pp.
220
232
.
96.
Beaty
,
R. E.
,
Kenett
,
Y. N.
,
Hass
,
R. W.
, and
Schacter
,
D. L.
,
2022
, “
Semantic Memory and Creativity: The Costs and Benefits of Semantic Memory Structure in Generating Original Ideas
,”
Think. Reason.
, pp.
1
35
.
97.
Simonton
,
D. K.
,
2000
, “
Creativity: Cognitive, Personal, Developmental, and Social Aspects
,”
Am. Psychol.
,
55
(
1
), pp.
151
158
.
98.
He
,
Y.
, and
Luo
,
J.
,
2017
, “
The Novelty ‘Sweet Spot’ of Invention
,”
Des. Sci.
,
3
, p.
e21
.
99.
Luo
,
J.
, and
Wood
,
K. L.
,
2017
, “
The Growing Complexity in Invention Process
,”
Res. Eng. Des.
,
28
(
4
), pp.
421
435
.
100.
Stevenson
,
C.
,
Smal
,
I.
,
Baas
,
M.
,
Grasman
,
R.
, and
van der Maas
,
H.
,
2022
, “
Putting GPT-3′s Creativity to the (Alternative Uses) Test
,” arXiv preprint arXiv:2206.08932.
101.
Amabile
,
T. M.
,
1982
, “
Social Psychology of Creativity: A Consensual Assessment Technique
,”
J. Pers. Soc. Psychol.
,
43
(
5
), pp.
997
1013
.
102.
Weisberg
,
R. W.
,
2006
,
Creativity: Understanding Innovation in Problem Solving, Science, Invention, and the Arts
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
103.
Amabile
,
T. M.
,
1996
,
Creativity in Context: Update to the Social Psychology of Creativity
,
Westview Press
,
Boulder, CO
.
104.
Shah
,
J. J.
,
Smith
,
S. M.
, and
Vargas-Hernandez
,
N.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
105.
Brown
,
D. C.
,
2015
, “Computational Design Creativity Evaluation,”
Design Computing and Cognition'14
,
J.S.
Gero
, and
S.
Hanna
, eds.,
Springer
,
Cham
, pp.
207
224
.
106.
He
,
Y.
, and
Luo
,
J.
,
2017
, “Novelty, Conventionality, and Value of Invention,”
Design Computing and Cognition'16
,
J.
Gero
, ed.,
Springer
,
Cham
, pp.
23
38
.
107.
Camburn
,
B.
,
He
,
Y.
,
Raviselvam
,
S.
,
Luo
,
J.
, and
Wood
,
K.
,
2020
, “
Machine Learning-Based Design Concept Evaluation
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031113
.
108.
Shibayama
,
S.
,
Yin
,
D.
, and
Matsumoto
,
K.
,
2021
, “
Measuring Novelty in Science With Word Embedding
,”
PLoS One
,
16
(
7
), p.
e0254034
.
109.
Teller
,
V.
,
2000
,
Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition
,
Prentice Hall
,
Upper Saddle River, NJ
.
110.
Beaty
,
R. E.
, and
Johnson
,
D. R.
,
2021
, “
Automating Creativity Assessment With SemDis: An Open Platform for Computing Semantic Distance
,”
Behav. Res. Methods
,
53
(
2
), pp.
757
780
.
111.
Luo
,
J.
,
Song
,
B.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Design Opportunity Conception Using the Total Technology Space Map
,”
AI EDAM
,
32
(
4
), pp.
449
461
.
112.
Srinivasan
,
V.
,
Song
,
B.
,
Luo
,
J.
,
Subburaj
,
K.
,
Elara
,
M. R.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Does Analogical Distance Affect Performance of Ideation?
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071101
.
113.
Gentner
,
D.
,
1983
, “
Structure-Mapping: A Theoretical Framework for Analogy
,”
Cogn. Sci.
,
7
(
2
), pp.
155
170
.
114.
Radford
,
A.
,
Kim
,
J. W.
,
Hallacy
,
C.
,
Ramesh
,
A.
,
Goh
,
G.
,
Agarwal
,
S.
,
Sastry
,
G.
, et al
,
2021
, “
Learning Transferable Visual Models From Natural Language Supervision
,”
International Conference on Machine Learning
,
Virtual
,
July 18–24
, PMLR, pp.
8748
8763
.
115.
Ramesh
,
A.
,
Pavlov
,
M.
,
Goh
,
G.
,
Gray
,
S.
,
Voss
,
C.
,
Radford
,
A.
,
Chen
,
M.
, and
Sutskever
,
I.
,
2021
, “
Zero-Shot Text-to-Image Generation
,”
International Conference on Machine Learning
,
Virtual
,
July 18–24
, PMLR, pp.
8821
8831
.
116.
Dosovitskiy
,
A.
,
Beyer
,
L.
,
Kolesnikov
,
A.
,
Weissenborn
,
D.
,
Zhai
,
X.
,
Unterthiner
,
T.
,
Dehghani
,
M.
, et al
,
2021
, “
An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale
,”
International Conference on Learning Representations
,
Virtual
,
May 3–7
.
117.
He
,
K.
,
Chen
,
X.
,
Xie
,
S.
,
Li
,
Y.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2021
, “
Masked Autoencoders Are Scalable Vision Learners
,”
arXiv preprint arXiv:2111.06377
.
118.
Bommasani
,
R.
,
Hudson
,
D. A.
,
Adeli
,
E.
,
Altman
,
R.
,
Arora
,
S.
,
von Arx
,
S.
,
Bernstein
,
M. S.
, et al
,
2021
, “
On the Opportunities and Risks of Foundation Models
,”
arXiv preprint
. https://arxiv.org/abs/2108.07258
You do not currently have access to this content.