Abstract

The presence of damage in the adhesive material as well as combined environmental excitation in multi-material adhesive step-lap joints (ASLJs) often encountered in aircraft industries are frequently neglected. Historically, the ASLJ design is based only within the scope of elastoplastic failure. The present work describes the implementation and application of a computational framework enabling the quasistatic performance evaluation of such joints under the simultaneous presence of plasticity, damage, and hygrothermal environmental stimuli. In particular, ASLJ linking Ti–6Al–4V alloy adherents with an FM-300K adhesive are modeled under the proposed framework for various material responses and environmental excitations. It is shown that the assumption of using only elastoplastic failure for the adhesive may not be an adequate assumption for designing and qualifying ASLJs. Specifically, consideration of the presence of plasticity, damage, and environmental effects indicates that there are reasons to re-examine the design practices of such joints and to determine the relevant material constants associated with the multiphysics cross-coupling effects.

References

1.
Mueller
,
E. M.
,
Starnes
,
S.
,
Strickland
,
N.
,
Kenny
,
P.
, and
Williams
,
C.
,
2016
, “
The Detection, Inspection, and Failure Analysis of a Composite Wing Skin Defect on a Tactical Aircraft
,”
Compos. Struct.
,
145
, pp.
186
193
.
2.
Jones
,
R.
,
Peng
,
D.
,
Michopoulos
,
J. G.
, and
Kinloch
,
A. J.
,
2020
, “
Requirements and Variability Affecting the Durability of Bonded Joints
,”
Materials
,
13
(
6
), p.
1468
.
3.
CMH17
,
2012
,
Polymer Matrix Composites Materials Usage, Design and Analysis
, Vol.
3
,
SAE International
,
Warrendale, PA
.
4.
Potter
,
D.
,
1979
,
Primary Adhesively Bonded Structure Technology (PABST). Design Handbook for Adhesive Bonding
,
Tech. Rep. AFFDL-TR-79-2120, Air Force Wright Aeronautical Laboratories
.
5.
Hart-Smith
,
L. J.
,
1982
, “
Design Methodology for Bonded-Bolted Composite Joints. Vol. I Analysis Derivations and Illustrative Solutions
,” Tech. Rep. AFWAL-TR-81-3154,
Air Force Wright Aeronautical Laboratories
,
OH
.
6.
Hart-Smith
,
L. J.
,
1982
, “
Design Methodology for Bonded-Bolted Composite Joints. Vol. II User Manual and Computer Codes
,” Tech. Rep. AFWAL-TR-81-3154,
Air Force Wright Aeronautical Laboratories
,
OH
.
7.
Hart-Smith
,
L. J.
,
1973
, “
Adhesive-Bonded Single-Lap Joints
,” Tech. Rep. NASA CR 112236,
NASA Langley Research Center
,
Hampton, VA
.
8.
Jones
,
R.
,
Peng
,
D.
,
Michopoulos
,
J. G.
, and
Kinloch
,
A. J.
,
2020
, “
Requirements and Variability Affecting the Durability of Bonded Joints
,”
MDPI Mater.
,
13
(
6
), pp.
1
23
.
9.
Solvay
,
2021
, “
Solvay Film Adhesive Catalog
,” https://www.solvay.com/en/brands/fm/product-catalog
10.
Technical Data Sheet FM 300 Adhesive Film
.
11.
Vodicka
,
R.
,
2001
, “
Flow Testing of Cytec FM300 and FM300-2K Structural Adhesives
,” Tech. Rep.,
Defence Science and Technology Organisation
.
12.
Jangblad
,
D.
,
Gradin
,
P.
, and
Stenström
,
T.
,
1988
, “
Determination and Verification of Elastic Parameters for Adhesives
,”
Adhesively Bonded Joints: Testing Analysis and Design (ASTM STP981)
,
Baltimore, MD
, pp.
54
68
.
13.
Markatos
,
D.
,
Tserpes
,
K.
,
Rau
,
E.
,
Markus
,
S.
,
Ehrhart
,
B.
, and
Pantelakis
,
S.
,
2013
, “
The Effects of Manufacturing-Induced and In-Service Related Bonding Quality Reduction on the Mode-i Fracture Toughness of Composite Bonded Joints for Aeronautical Use
,”
Compos. Part B: Eng.
,
45
(
1
), pp.
556
564
.
14.
Michopoulos
,
J.
,
Apetre
,
N.
,
Iliopoulos
,
A.
, and
Steuben
,
J.
,
2022
, “
Elasto-Plasticity, Damage and Multiphysics Effects on the Behavior of Adhesive Step Lap Joints
,”
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, pp.
E2022
90996
, Paper No. IDETC/CIE2022-90996.
15.
Collier
,
C.
,
2005
, “
Consistent Structural Integrity and Efficient Certification With Analysis
,” Tech. Rep. AFRL-VA-WP-TR-2005-3033, -3034, -3035,
Collier Research Corporation
.
16.
de Borst
,
R.
,
2002
, “
Fracture in Quasi-Brittle Materials: A Review of Continuum Damage-Based Approaches
,”
Eng. Fract. Mech.
,
69
(
2
), pp.
95
112
.
17.
Bazant
,
Z.
, and
Oh
,
B. H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Matériaux et Construction
,
16
(
3
), pp.
155
177
.
18.
Park
,
K.
, and
Paulino
,
G. H.
,
2011
, “
Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces
,”
ASME J. Appl. Mech. Rev.
,
64
(
6
), p.
060802
.
19.
Camanho
,
P.
, and
Hallett
,
S.
,
2015
,
Numerical Modelling of Failure in Advanced Composite Materials
,
Woodhead Publishing
,
New York
.
20.
Feenstra
,
P. H.
, and
De Borst
,
R.
,
1995
, “
A Plasticity Model and Algorithm for Mode-i Cracking in Concrete
,”
Int. J. Numer. Methods Eng.
,
38
(
15
), pp.
2509
2529
.
21.
Cedolin
,
L.
, and
Bazant
,
Z.
,
1991
,
Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories
,
Oxford University Press
,
Oxford, UK
.
22.
Elices
,
M.
,
Guinea
,
G.
,
Gomez
,
J.
, and
Planas
,
J.
,
2002
, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
,
69
(
2
), pp.
137
163
.
23.
Jirásek
,
M.
, and
Patzák
,
B.
,
2002
, “
Consistent Tangent Stiffness for Nonlocal Damage Models
,”
Comput. Struct.
,
80
(
14–15
), pp.
1279
1293
.
24.
Maimí
,
P.
,
Camanho
,
P. P.
,
Mayugo
,
J.
, and
Dávila
,
C.
,
2007
, “
A Continuum Damage Model for Composite Laminates: Part I—Constitutive Model
,”
Mech. Mater.
,
39
(
10
), pp.
897
908
.
25.
Gasch
,
T.
, and
Ansell
,
A.
,
2016
, “
Cracking in Quasi-brittle Materials Using Isotropic Damage Mechanics
,”
Proceedings COMSOL Conference
,
Munich, Germany
,
Oct. 12–14
.
26.
Sarkar
,
S.
,
Singh
,
I.
, and
Mishra
,
B.
,
2022
, “
A Simple and Efficient Implementation of Localizing Gradient Damage Method in Comsol for Fracture Simulation
,”
Eng. Fract. Mech.
,
269
, p.
108552
.
27.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Matér. Constr.
,
16
(
3
), pp.
155
177
.
28.
Jirásek
,
M.
, and
Bauer
,
M.
,
2012
, “
Numerical Aspects of the Crack Band Approach
,”
Comput. Struct.
,
110
, pp.
60
78
.
29.
Schreter
,
M.
,
Neuner
,
M.
, and
Hofstetter
,
G.
,
2018
, “
Evaluation of the Implicit Gradient-Enhanced Regularization of a Damage-Plasticity Rock Model
,”
Appl. Sci.
,
8
(
6
), p.
1004
.
30.
Peerlings
,
R. H.
,
de Borst
,
R.
,
Brekelmans
,
W. M.
, and
de Vree
,
J.
,
1996
, “
Gradient Enhanced Damage for Quasi-Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
39
(
19
), pp.
3391
3403
.
31.
comsol
,
2021
, “COMSOL Multiphysics,” https://www.comsol.com/
32.
Sih
,
G. C.
,
Michopoulos
,
J. G.
, and
Chou
,
S. C.
,
1986
,
Hygrothermoelasticity
,
Martinuus Nijhoff Publishers
,
Dordrecht
.
33.
Moutsompegka
,
E.
,
2020
, “
Evaluation of the Effects of Defects and Ageing on the Strength of Composite Bonded Joints by Mechanical Tests and Numerical Simulation: Implementation of the Novel Centrifuge Test
,” PhD thesis, Doctoral dissertation,
Laboratory of Technology and Strength of Materials
.
34.
Tan
,
S.
,
1992
, “
Analysis of Bolted and Bonded Composite Joints
,” Materials Directorate, Wright Laboratory, Air Force Materials Command,
Wright-Patterson Air Force Base
,
OH
, États-Unis, Rapport WL-TR-92-4084.
35.
Jurf
,
R. A.
,
1988
,
Environmental Effects on Fracture of Adhesively Bonded Joints
,
ASTM STP 981, W.S. Johnson Ed. American Society for Testing and Materials
,
Philadelphia, PA
, vol. 288, p.
276
.
36.
Yildiz
,
S.
,
Andreopoulos
,
Y.
,
Jensen
,
R. E.
,
Shaffren
,
D.
,
Jahnke
,
D.
, and
Delale
,
F.
,
2019
, “
Characterization of Adhesively Bonded Aluminum Plates Subjected to Shock-Wave Loading
,”
Int. J. Impact Eng.
,
127
, pp.
86
99
.
37.
Lenwari
,
A.
,
Albrecht
,
P.
, and
Albrecht
,
M.
,
2005
, “
SED Method of Measuring Yield Strength of Adhesives and Other Materials
,”
J. ASTM Int.
,
2
(
10
), pp.
35
53
.
38.
Russell
,
A.
,
1988
, “
A Damage Tolerance Assessment of Bonded Repairs to CF-18 Composite Components. Part 1. Adhesive Properties
,” Tech. Rep.,
Defence Research Establishment Pacific Victoria
.
39.
Canal
,
L. P.
, and
Michaud
,
V.
,
2014
, “
Micro-scale Modeling of Water Diffusion in Adhesive Composite Joints
,”
Compos. Struct.
,
111
, pp.
340
348
.
40.
Kohli
,
D. K.
,
1999
, “
Improved 121 C Curing Epoxy Film Adhesive for Composite Bonding and Repair Applications: FM® 300-2 Adhesive System
,”
Int. J. Adhes. Adhes.
,
19
(
2–3
), pp.
231
242
.
41.
Sarfaraz
,
R.
,
Canal
,
L. P.
,
Violakis
,
G.
,
Botsis
,
J.
,
Michaud
,
V.
, and
Limberger
,
H. G.
,
2015
, “
An Experimental–Numerical Investigation of Hydrothermal Response in Adhesively Bonded Composite Structures
,”
Compos. Part A: Appl. Sci. Manuf.
,
73
, pp.
176
185
.
42.
Renaud
,
G.
,
1999
, “
Composite Patch Repair Including Thermal Processing Effects: A Finite Element Analysis Capability
,” Citeseer.
43.
Mirsadeghi
,
M.
,
Cóstola
,
D.
,
Blocken
,
B.
, and
Hensen
,
J.
,
2013
, “
Review of External Convective Heat Transfer Coefficient Models in Building Energy Simulation Programs: Implementation and Uncertainty
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
134
151
.
44.
Liu
,
Z.
,
Sun
,
M.
,
Huang
,
Y.
,
Li
,
K.
, and
Wang
,
C.
,
2020
, “
Investigation of Heat Transfer Characteristics of High-Altitude Intercooler for Piston Aero-engine Based on Multi-Scale Coupling Method
,”
Int. J. Heat Mass Transfer
,
156
, p.
119898
.
You do not currently have access to this content.