Abstract

With the increasingly serious global climate problem, the low-carbon design of products has gradually become an important direction of sustainable manufacturing. The optimization design of product structure is one of the important means to realize the low-carbon operation of product structure. Therefore, how to carry out the low-carbon optimization design of the product is the focus of this paper. In this paper, a new framework of low-carbon manufacturing is constructed, the load on the crane of the offshore wind power installation platform is analyzed, and the dynamic load generated by the crane during lifting, rotating, and luffing is analyzed in detail. The simulation results are compared with the empirical formula provided by the crane design specification and the dynamic analysis results of the crane, which proves the rationality of the simulation results and the dynamic theoretical analysis. And the wind load on the crane is calculated, which provides support for the rigid-flexible coupling dynamic analysis of other parts of the solution. Based on the dynamic simulation and load analysis of the offshore platform crane, the low-carbon optimization design of the offshore platform pile leg is carried out, the carbon emission of the whole life cycle is optimized, and the feasibility of the scheme is verified.

References

1.
He
,
B.
, and
Bai
,
K. J.
,
2021
, “
Digital Twin-Based Sustainable Intelligent Manufacturing: A Review
,”
Adv. Manuf.
,
9
(
1
), pp.
1
21
.
2.
Park
,
C. J.
,
Kwon
,
K. S.
,
Kim
,
W. B.
,
Min
,
B.
,
Park
,
S. J.
,
Sung
,
I.
,
Yoon
,
Y.
,
Lee
,
K. J.
,
Lee
,
J. H.
, and
Seok
,
J.
,
2009
, “
Energy Consumption Reduction Technology in Manufacturing: A Selective Review of Policies, Standards, and Research
,”
Int. J. Precis. Eng. Manuf.
,
10
(
5
), pp.
151
173
.
3.
He
,
B.
,
Liu
,
Y. J.
,
Zeng
,
L. B.
,
Wang
,
S.
,
Zhang
,
D.
, and
Yu
,
Q. Y.
,
2019
, “
Product Carbon Footprint Across Sustainable Supply Chain
,”
J. Clean. Prod.
,
241
, p.
118320
.
4.
He
,
B.
,
Cao
,
X. Y.
, and
Gu
,
Z. C.
,
2020
, “
Kinematics of Underactuated Robotics for Product Carbon Footprint
,”
J. Clean. Prod.
,
257
, p.
120491
.
5.
Steuben
,
J. C.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2018
, “
Multiscale Topology Optimization for Additively Manufactured Objects
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031002
.
6.
Sanjurjo
,
E.
,
Dopico
,
D.
,
Luaces
,
A.
, and
Naya
,
M.
,
2018
, “
State and Force Observers Based on Multibody Models and the Indirect Kalman Filter
,”
Mech. Syst. Signal Process.
,
106
, pp.
210
228
.
7.
Ye
,
J.
,
Godjevac
,
M.
,
Baldi
,
S.
, and
Hopman
,
H.
,
2019
, “
Joint Estimation of Vessel Position and Mooring Stiffness During Offshore Crane Operations
,”
Autom. Constr.
,
101
, pp.
218
226
.
8.
Ismail
,
R.
,
That
,
N. D.
, and
Ha
,
Q.
,
2015
, “
Modelling and Robust Trajectory Following for Offshore Container Crane Systems
,”
Autom. Constr.
,
59
, pp.
179
187
.
9.
Ham
,
S.
,
Roh
,
M.
, and
Lee
,
H.
,
2020
, “
Collision Detection and Response of Multibody Systems Using a Position Difference Method and Non-Interpenetration Constraint in Shipbuilding Simulation
,”
Ocean Eng.
,
195
, p.
106673
.
10.
Tysse
,
G. O.
, and
Egeland
,
O.
,
2018
, “
Dynamic Interaction of a Heavy Crane and a Ship in Wave Motion
,”
Model. Ident. Control.
,
39
(
2
), pp.
45
60
.
11.
Cibicik
,
A.
,
Pedersen
,
E.
, and
Egeland
,
O.
,
2020
, “
Dynamics of Luffing Motion of a Flexible Knuckle Boom Crane Actuated by Hydraulic Cylinders
,”
Mech. Mach. Theory
,
143
, p.
103616
.
12.
Rong
,
B.
,
Rui
,
X.
,
Lu
,
K.
,
Tao
,
L.
,
Wang
,
G.
, and
Yang
,
F.
,
2019
, “
Dynamics Analysis and Wave Compensation Control Design of Ship S Seaborne Supply by Discrete Time Transfer Matrix Method of Multibody System
,”
Mech. Syst. Signal Process.
,
128
(
4
), pp.
50
68
.
13.
Flatlandsmo
,
J.
,
Smith
,
T.
,
Halvorsen
,
ØO
, and
Impelluso
,
T.
,
2019
, “
Modeling Stabilization of Crane-Induced Ship Motion with Gyroscopic Control Using the Moving Frame Method
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
3
), p.
031006
.
14.
He
,
B.
,
Li
,
F. F.
,
Cao
,
X. Y.
, and
Li
,
T. Y.
,
2020
, “
Product Sustainable Design: A Review From the Environmental, Economic, and Social Aspects
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
040801
.
15.
Fang
,
Y. C.
,
Wang
,
P. C.
,
Sun
,
N.
, and
Zhang
,
Y. C.
,
2014
, “
Dynamics Analysis and Nonlinear Control of an Offshore Boom Crane
,”
IEEE Trans. Ind. Electron.
,
61
(
1
), pp.
414
427
.
16.
He
,
B.
,
Zhang
,
D.
,
Gu
,
Z.
,
Zhu
,
X.
, and
Cao
,
X.
,
2020
, “
Skeleton Model-Based Product Low Carbon Design Optimization
,”
J. Clean. Prod.
,
264
, p.
121687
.
17.
Aghajanian
,
S.
, and
Koiranen
,
T.
,
2020
, “
Dynamic Modeling and Semibatch Reactive Crystallization of Calcium Carbonate Through Co2 Capture in Highly Alkaline Water
,”
J. CO2 Util.
,
38
, pp.
366
374
.
18.
He
,
B.
,
Zhu
,
X. R.
, and
Zhang
,
D.
,
2020
, “
Boundary Encryption-Based Monte Carlo Learning Method for Workspace Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
034502
.
19.
Hong
,
K.
, and
Ngo
,
Q. H.
,
2012
, “
Dynamics of the Container Crane on a Mobile Harbor
,”
Ocean Eng.
,
53
, pp.
16
24
.
20.
Lee
,
H.
, and
Roh
,
M.
,
2018
, “
Review of the Multibody Dynamics in the Applications of Ships and Offshore Structures
,”
Ocean Eng.
,
167
, pp.
65
76
.
21.
Patel
,
M.
,
1989
,
Dynamics of Offshore Structures
,
Butterworth Publishers
,
Stoneham, MA
.
22.
Nævestad
,
T.-O.
,
2008
, “
Safety Understandings Among Crane Operators and Process Operators on a Norwegian Offshore Platform
,”
Safety Sci.
,
46
(
3
), pp.
520
534
.
23.
Carbon Trust
,
2007
,
Carbon Footprint Measurement Methodology
, Version 1.3, Mar. 15, 2007.
24.
Wang
,
C. B.
,
Zhang
,
L. X.
, and
Pang
,
M. Y.
,
2015
, “
A Review on Hybrid Life Cycle Assessment: Development and Application
,”
J. Nat. Resour.
,
30
(
7
), pp.
1232
1242
.
25.
He
,
B.
,
Luo
,
T.
, and
Huang
,
S.
,
2019
, “
Product Sustainability Assessment for Product Life Cycle
,”
J. Clean. Prod.
,
206
, pp.
238
250
.
26.
Dolter
,
B.
, and
Victor
,
P.
,
2016
, “
Casting a Long Shadow: Demand-Based Accounting of Canada’s Greenhouse Gas Emissions Responsibility
,”
Ecol. Econ.
,
127
, pp.
156
164
.
You do not currently have access to this content.