Abstract

A novel combination of mathematical tools underlies a method to lower cost of the first fixture-setup required to finish-machine surfaces on large castings or weldments where components will be attached. The computer-aided design (CAD) model, tolerance specifications, process plan, and design of the fixture, including configuration of the locators, are given. The math tools are used to build algorithms for a digital model, the Setup-Map© (S-Map©), that predictively captures all allowable locator adjustments needed to position and orient each part in its fixture before machining begins. The S-Map in this paper is generated for a case-study design, a cast valve-body with two to-be-machined (TBM) features, but the math tools are general so the same methods could be applied directly, or easily adapted, to other designs and fixture schemes. Geometric variations at the TBM features are represented with Tolerance-Maps© (T-Maps©) that are constructed with higher-dimensional linear half-spaces. The T-Maps are shifted to be aligned with, and offset from, one-sided simulated envelopes derived from scans of corresponding features on each casting. Linear programming identifies the setup-point that is chosen to most evenly distribute the required amount of machining over all the TBM features. Inverse kinematics of parallel robots is used to convert the setup-point to custom settings at the fixture locators for each casting. The half-space construction enables the identification of TBM features that have insufficient material and require repair. The algorithms were validated with 13 castings.

References

1.
Haghighi
,
P.
,
Ramnath
,
S.
,
Kalish
,
N. J.
,
Shah
,
J. V.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2016
, “
Method for Automating Digital Fixture-Setups That Are Optimal for Machining Castings to Minimize Scrap
,”
J. Manuf. Syst.
,
40
(
2
), pp.
15
22
. 10.1016/j.jmsy.2016.05.004
2.
Kalish
,
N. J.
,
2016
, “
The Theory Behind Set-up Maps: A Computational Tool to Position Parts for Machining
,”
MS thesis
,
Arizona State University
,
Tempe, AZ
.
3.
Kalish
,
N.
,
Ramnath
,
S.
,
Haghighi
,
P.
,
Davidson
,
J. K.
,
Shah
,
J. J.
, and
Shah
,
J. V.
,
2018
, “
Mathematical Tools for Automating Digital Fixture Setups: Constructing T-Maps and Relating Metrological Data to Coordinates for T-Maps and Deviation Spaces
,”
J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041009
. 10.1115/1.4038821
4.
Rong
,
Y. K.
, and
Zhu
,
Y. S.
,
1999
,
Computer-Aided Fixture Design
,
Marcel Dekker
,
New York
.
5.
Wu
,
Y.
,
Rong
,
Y.
,
Ma
,
W.
, and
LeClair
,
S. R.
,
1998
, “
Automated Modular Fixture Planning: Geometric Analysis
,”
Rob. Comput.-Integr. Manuf.
,
14
(
1
), pp.
1
15
. 10.1016/S0736-5845(97)00024-0
6.
Carlson
,
J. S.
,
2001
, “
Quadratic Sensitivity Analysis of Fixtures and Locating Schemes for Rigid Parts
,”
J. Manuf. Sci. Eng.
,
123
(
3
), pp.
462
472
.
7.
Soderberg
,
R.
, and
Lindkvist
,
L.
,
2003
, “Automated Seam Variation and Stability Analysis for Automotive Body Design,”
Geometric Product Specification and Verification: Integration of Functionality
,
P.
Bourdet
, and
L.
Mathieu
, ed.,
Springer
,
Dordrecht, the Netherlands
, pp.
255
264
.
8.
Moroni
,
G.
,
Petro
,
S.
, and
Polini
,
W.
,
2014
, “
Robust Design of Fixture Configuration
,”
Procedia CIRP
,
21
, pp.
189
194
.
9.
Boyle
,
I.
,
Rong
,
Y.
, and
Brown
,
D. C.
,
2011
, “
A Review and Analysis of Current Computer-Aided Fixture Design Approaches
,”
Rob. Comput.-Integr. Manuf.
,
27
, pp.
1
12
.
10.
Choudhuri
,
E. A.
, and
De Meter
,
E. C.
,
1999
, “
Tolerance Analysis of Machining Fixture Locators
,”
J. Manuf. Sci. Eng.
,
121
(
2
), pp.
273
281
. 10.1115/1.2831216
11.
Villeneuve
,
F.
,
Legoff
,
O.
, and
Bourdet
,
P.
,
2000
, “
Three-Dimensional Geometrical Tolerancing in Process Planning
,”
CIRP J. Manuf. Syst.
,
30
(
5
), pp.
20
28
.
12.
Marin
,
R. A.
, and
Ferreira
,
P. M.
,
2003
, “
Analysis of the Influence of Fixture Locator Errors on the Compliance of Work Part Fixtures to Geometric Tolerance Specifications
,”
J. Manuf. Sci. Eng.
,
125
(
3
), pp.
609
616
. 10.1115/1.1578669
13.
Bobrow
,
J. E.
,
1985
, “
N/C Machine Tool-Path Generation From CSG Part Representation
,”
Comput.-Aided Des.
,
17
(
2
), pp.
69
76
. 10.1016/0010-4485(85)90248-9
14.
Mujezinovič
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2004
, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
J. Mech. Des.
,
126
(
3
), pp.
504
518
. 10.1115/1.1701881
15.
He
,
Y.
,
Kalish
,
N.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2016
, “
Tolerance-Maps for Line-Profiles Formed by Intersecting Kinematically Transformed Primitive T-Map Elements
,”
J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021005
. 10.1115/1.4033236
16.
Giordano
,
M.
, and
Duret
,
D.
,
1993
, “
Clearance Space and Deviation Space
,”
Proceedings of 3rd CIRP Seminar on Computer-Aided Tolerancing
,
ENS
,
Cachan, France
,
Apr. 27–28
, pp.
179
-
196
.
17.
American National Standard ASME Y14.5M
,
2009
,
Dimensioning and Tolerancing
,
The American Society of Mechanical Engineers
,
New York
.
18.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2019
, “
Convexity and Optimality Conditions for Constrained Least-Squares Fitting of Planes and Parallel Planes to Establish Datums
,”
J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011002
. 10.1115/1.4041226
19.
International Organization for Standardization ISO 8062-3
,
2008–2009
,
Dimensional and Geometrical Tolerances for Moulded Parts—Part 3: General Dimensional and Geometrical Tolerances and Machining Allowances for Castings
,
International Organization for Standardization
,
Geneva, Switzerland
.
20.
Mohan
,
P.
,
Haghighi
,
P.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2015
, “
Development of a Library of Feature Fitting Algorithms for CMMs
,”
Int. J. Precis. Eng. Manuf.
,
16
(
10
), pp.
2101
2113
. 10.1007/s12541-015-0272-1
21.
Bourdet
,
P.
, and
Clément
,
A.
,
1988
, “
A Study of Optimal Criteria Identification Based on the Small Displacement Screw Model
,”
Ann. CIRP
,
37
(
1
), pp.
503
506
. 10.1016/S0007-8506(07)61687-4
22.
Chitale
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2019
, “
Statistical Tolerance Analysis With Sensitivities Established From Tolerance-Maps and Deviation Spaces
,”
J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041002
. 10.1115/1.4042838
23.
Desrochers
,
A.
,
Ghie
,
W.
, and
Laperriere
,
L.
,
2003
, “
Application of a Unified Jacobian-Torsor Model for Tolerance Analysis
,”
J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
2
14
. 10.1115/1.1573235
24.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
Oxford
.
25.
Bhide
,
S.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “Tolerance-Maps Applied to the Straightness and Orientation of an Axis,”
Models for Computer-Aided Tolerancing in Design and Manufacturing
,
JK
Davidson
, ed.,
Springer
,
Dordrecht, the Netherlands
, pp.
45
54
.
26.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance for Pin-Hole Assemblies
,”
J. Comput. Inf. Sci. Eng.
,
7
(
4
), pp.
347
359
. 10.1115/1.2796308
27.
Giordano
,
M.
,
Pairel
,
E.
, and
Samper
,
S.
,
1999
, “
Mathematical Representation of Tolerance Zones,” Global Consistency of Tolerances
,
Proceedings of 6th CIRP Int'l Seminar on Computer-Aided Tolerancing
,
University of Twente, Netherlands
,
Mar. 22–24
(ed.
F.
vanHouten
and
H.
Kals
), pp.
177
86
,
Kluwer, Dordrecht
.
28.
Mansuy
,
M.
,
Giordano
,
M.
, and
Davidson
,
J. K.
,
2013
, “
Comparison of Two Similar Mathematical Models for Tolerance Analysis: T-Map and Deviation Domain
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101008
. 10.1115/1.4024980
29.
Ziegler
,
G. M.
,
2007
,
Lectures on Polytopes
,
Springer
,
New York
.
30.
https://github.com/qhull/qhull, Accessed July, 2020.
31.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Software
,
22
(
4
), pp.
469
483
. 10.1145/235815.235821
32.
Coxeter
,
H. S. M.
,
1969
,
Introduction to Geometry
, 2nd ed.,
Wiley
,
Toronto
.
33.
Homri
,
L.
,
Teissandier
,
D.
, and
Ballu
,
A.
,
2015
, “
Tolerance Analysis by Polytopes: Taking Into Account Degrees of Freedom With Cap Half-Spaces
,”
Comput. Aided Des.
,
62
(
5
), pp.
112
130
. 10.1016/j.cad.2014.11.005
34.
Arroyo-Tobón
,
S.
,
Teissandier
,
D.
, and
Delos
,
V.
,
2017
, “
Tolerance Analysis With Polytopes in H-V Description
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041011
. 10.1115/1.4036558
35.
Preparata
,
F. P.
, and
Shamos
,
M. I.
,
1985
,
Computational Geometry: An Introduction
,
Springer-Verlag
,
New York
.
36.
Chitale
,
A.
,
Kalish
,
N. J.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2018
, “
Generating T-Maps With the Kinematic Transformation to Model Manufacturing Variations of Parts With Position Tolerancing of Cylinders
,”
Procedia CIRP (SciVerse ScienceDirect)
,
75
, pp.
214
219
. 10.1016/j.procir.2018.04.053
37.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
, 2nd ed.,
Springer-Verlag
,
New York
.
38.
Lougee-Heimer
,
R.
,
2003
, “
The Common Optimization Interface for Operations Research: Promoting Open-Source Software in the Operations Research Community
,”
IBM J. Res. Dev.
,
47
(
1
), pp.
57
66
. 10.1147/rd.471.0057
39.
https://github.com/coin-or/Clp, Accessed July, 2020.
40.
Merlet
,
J. P.
,
2000
,
Parallel Robots
,
Kluwer
,
Dordrecht
.
41.
Legoff
,
O.
,
Villeneuve
,
F.
, and
Bourdet
,
P.
,
1999
, “
Geometrical Tolerancing in Process Planning: A Tridimensional Approach
,”
Proc. IMech E., Part B
,
213
(
6
), pp.
635
640
. 10.1243/0954405991517083
42.
Häussinger
,
C.
,
Brunner
,
L.
,
Martiner
,
A.
,
Kleinwort
,
R.
, and
Zach
,
M. F.
,
2020
, “
On-Machine Measuring Method for the Reconstruction of Additively Manufactured Near-Net Shaped Parts
,”
Procedia CIRP
,
92
, pp.
175
180
. 10.1016/j.procir.2020.05.186
43.
Kandikjan
,
T.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2001
, “
A Mechanism for Validating Dimensioning and Tolerancing Schemes in CAD Systems
,”
Comput.-Aided Des.
,
33
(
10
), pp.
721
737
. 10.1016/S0010-4485(00)00106-8
You do not currently have access to this content.