Additive manufacturing (AM) has enabled control over heterogeneous materials and structures in ways that were not previously possible, including functionally graded materials and structures. This paper presents a novel method for representing and communicating heterogeneous materials and structures that include tolerancing of geometry and material together. The aim of this paper is to propose a means to specify nominal materials, nominal structures and allowable material variations in parts, including (a) explicit material and structural transitions (implying abrupt changes) and (b) functional transitions to support single and multiple material and structural behaviors (implying designed function-based gradients). The transition region combines bounded regions (volumes and surfaces) and material distribution and structural variation equations. Tolerancing is defined at two levels, that of the geometry including bounded regions and that of the materials. Material tolerances are defined as allowable material variations from nominal material fractions within a unit volume at a given location computed using material distribution equations. The method is described thorough several case studies of abrupt transitions, lattice-based transitions, and multimaterial and structural transitions.

References

1.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
4
(
5
), pp.
585
594
.
2.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
, New York.
3.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, p.
208760
.
4.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
348
362
.http://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-27-Brackett.pdf
5.
Hiller
,
J. D.
, and
Lipson
,
H.
,
2009
, “
STL 2.0: A Proposal for a Universal Multi-Material Additive Manufacturing File Format
,”
Solid Freeform Fabrication Symposium,
Austin, TX
,
Aug. 3–5
, pp.
266
278
.
6.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2014
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
,
Springer
, New York.
7.
Ameta
,
G.
,
Lipman
,
R.
,
Moylan
,
S.
, and
Witherell
,
P.
,
2015
, “
Investigating the Role of Geometric Dimensioning and Tolerancing in Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111401
.
8.
Witherell
,
P.
,
Herron
,
J.
, and
Ameta
,
G.
,
2016
, “
Towards Annotations and Product Definitions for Additive Manufacturing
,”
Procedia CIRP
,
43
, pp.
339
344
.
9.
Ameta
,
G.
,
Moylan
,
S. P.
, and
Witherell
,
P. W.
,
2015
, “
Challenges in Tolerance Transfer for Additive Manufacturing
,”
Summer Topical Meeting of American Society of Precision Engineering
,
Raleigh, NC
,
July 8–10
.
10.
GRANTA
,
2016
, “
GRANTA MI:Materials Gateway for Creo
,” GRANTA, accessed Nov. 2, 2016, http://www.grantadesign.com/products/mi/proe/
11.
ASTM
,
2015
, “
Standard Guide for Identification of Metals and Alloys in Computerized Material Property Databases
,” ASTM International, West Conshohocken, PA.
12.
Kumar
,
P.
,
Santosa
,
J. K.
,
Beck
,
E.
, and
Das
,
S.
,
2004
, “
Direct-Write Deposition of Fine Powders Through Miniature Hopper-Nozzles for Multi-Material Solid Freeform Fabrication
,”
Rapid Prototyp. J.
,
10
(
1
), pp.
14
23
.
13.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
,
2005
, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyp. J.
,
11
(
1
), pp.
9
17
.
14.
Willis
,
K.
,
Brockmeyer
,
E.
,
Hudson
,
S.
, and
Poupyrev
,
I.
,
2012
, “
Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices
,”
25th Annual ACM Symposium on User Interface Software and Technology
,
Cambridge, MA
,
Oct. 7–12
, pp.
589
598
.http://www.kevinli.net/courses/mobilehci_w2014/papers/printedoptics.pdf
15.
Liu
,
J.
, and
Jang
,
B. Z.
,
2004
, “
Layer Manufacturing of a Multi-Material or Multi-Color 3-D Object Using Electrostatic Imaging and Lamination
,” U.S. Patent No. US20020145213A1.
16.
Chen
,
D.
,
Levin
,
D. I.
,
Didyk
,
P.
,
Sitthi-Amorn
,
P.
, and
Matusik
,
W.
,
2013
, “
Spec2Fab: A Reducer-Tuner Model for Translating Specifications to 3D Prints
,”
ACM Trans. Graph. TOG
,
32
(
4
), p.
135
.
17.
Church
,
K. H.
,
Tsang
,
H.
,
Rodriguez
,
R.
,
Defembaugh
,
P.
, and
Rumpf
,
R.
,
2013
, “
Printed Circuit Structures, the Evolution of Printed Circuit Boards
,”
IPC APEX EXPO Conference
,
San Diego, CA
, Feb., pp.
19
21
.http://utminers.utep.edu/pdeffenbaugh/printed_circuit_structures_ipc.pdf
18.
Jost
,
K.
,
Stenger
,
D.
,
Perez
,
C. R.
,
McDonough
,
J. K.
,
Lian
,
K.
,
Gogotsi
,
Y.
, and
Dion
,
G.
,
2013
, “
Knitted and Screen Printed Carbon-Fiber Supercapacitors for Applications in Wearable Electronics
,”
Energy Environ. Sci.
,
6
(
9
), pp.
2698
2705
.
19.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput.-Aided Des.
,
39
(
4
), pp.
284
301
.
20.
Patil
,
L.
,
Dutta
,
D.
,
Bhatt
,
A. D.
,
Jurrens
,
K.
,
Lyons
,
K.
,
Pratt
,
M. J.
, and
Sriram
,
R. D.
,
2000
, “
Representation of Heterogeneous Objects in ISO 10303 (STEP)
,”
ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
,
Nov. 5–8
.
21.
Zhang
,
X.-J.
,
Chen
,
K.-Z.
, and
Feng
,
X.-A.
,
2004
, “
Optimization of Material Properties Needed for Material Design of Components Made of Multi-Heterogeneous Materials
,”
Mater. Des.
,
25
(
5
), pp.
369
378
.
22.
Cho
,
J. R.
, and
Ha
,
D. Y.
,
2002
, “
Optimal Tailoring of 2D Volume-Fraction Distributions for Heat-Resisting Functionally Graded Materials Using FDM
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
29–30
), pp.
3195
3211
.
23.
Hu
,
Y.
,
Blouin
,
V. Y.
, and
Fadel
,
G. M.
,
2008
, “
Design for Manufacturing of 3D Heterogeneous Objects With Processing Time Consideration
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031701
.
24.
Jackson
,
T. R.
,
2000
, “
Analysis of Functionally Graded Material Object Representation Methods
,” Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA.
25.
Liu
,
H.
,
Cho
,
W.
,
Jackson
,
T. R.
,
Patrikalakis
,
N. M.
, and
Sachs
,
E. M.
,
2000
, “
Algorithms for Design and Interrogation of Functionally Gradient Material Objects
,” ASME Paper No. DAC-14278.
26.
Zhu
,
F.
,
2004
, “
Visualized CAD Modeling and Layered Manufacturing Modeling for Components Made of a Multiphase Perfect Material
,”
Master's thesis
, University of Hongkong, Hongkong, China.http://hdl.handle.net/10722/32189
27.
Shin
,
K.-H.
, and
Dutta
,
D.
,
2001
, “
Constructive Representation of Heterogeneous Objects
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
3
), pp.
205
217
.
28.
Elishakoff
,
I.
,
Gentilini
,
C.
, and
Viola
,
E.
,
2005
, “
Three-Dimensional Analysis of an All-Round Clamped Plate Made of Functionally Graded Materials
,”
Acta Mech.
,
180
(
1–4
), pp.
21
36
.
29.
Eraslan
,
A. N.
, and
Akis
,
T.
,
2006
, “
On the Plane Strain and Plane Stress Solutions of Functionally Graded Rotating Solid Shaft and Solid Disk Problems
,”
Acta Mech.
,
181
(
1–2
), pp.
43
63
.
30.
Pasko
,
A.
,
Adzhiev
,
V.
,
Schmitt
,
B.
, and
Schlick
,
C.
,
2001
, “
Constructive Hypervolume Modeling
,”
Graph. Models
,
63
(
6
), pp.
413
442
.
31.
Rvachev
,
V. L.
,
Sheiko
,
T. I.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
,
2001
, “
Transfinite Interpolation Over Implicitly Defined Sets
,”
Comput. Aided Geom. Des.
,
18
(
3
), pp.
195
220
.
32.
Siu
,
Y. K.
, and
Tan
,
S. T.
,
2002
, “
‘Source-Based' Heterogeneous Solid Modeling
,”
Comput.-Aided Des.
,
34
(
1
), pp.
41
55
.
33.
Biswas
,
A.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
,
2004
, “
Heterogeneous Material Modeling With Distance Fields
,”
Comput. Aided Geom. Des.
,
21
(
3
), pp.
215
242
.
34.
Park
,
S.-M.
,
Crawford
,
R. H.
, and
Beaman
,
J. J.
,
2001
, “
Volumetric Multi-Texturing for Functionally Gradient Material Representation
,”
Sixth ACM Symposium on Solid Modeling and Applications
,
Atlanta, Georgia
, pp.
216
224
.
35.
Liu
,
H.
,
Maekawa
,
T.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cho
,
W.
,
2004
, “
Methods for Feature-Based Design of Heterogeneous Solids
,”
Comput.-Aided Des.
,
36
(
12
), pp.
1141
1159
.
36.
Samanta
,
K.
, and
Koc
,
B.
,
2005
, “
Feature-Based Design and Material Blending for Free-Form Heterogeneous Object Modeling
,”
Comput.-Aided Des.
,
37
(
3
), pp.
287
305
.
37.
Bhashyam
,
S.
,
Hoon Shin
,
K.
, and
Dutta
,
D.
,
2000
, “
An Integrated CAD System for Design of Heterogeneous Objects
,”
Rapid Prototyping J.
,
6
(
2
), pp.
119
135
.
38.
Wei
,
H.
,
Wang
,
Y.
, and
Rosen
,
D. W.
,
2017
, “
A Multiscale Materials Modeling Method With Seamless Zooming Capability Based on Surfacelets
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021007
.
39.
Wei
,
H.
,
Wang
,
Y.
, and
Rosen
,
D. W.
,
2016
, “
Material Feature Representation and Identification With Composite Surfacelets
,”
J. Comput. Des. Eng.
,
3
(
4
), pp.
370
384
.
40.
Huang
,
J.
,
Fadel
,
G. M.
,
Blouin
,
V. Y.
, and
Grujicic
,
M.
,
2002
, “
Bi-Objective Optimization Design of Functionally Gradient Materials
,”
Mater. Des.
,
23
(
7
), pp.
657
666
.
41.
Qian
,
X.
, and
Dutta
,
D.
,
2003
, “
Design of Heterogeneous Turbine Blade
,”
Comput.-Aided Des.
,
35
(
3
), pp.
319
329
.
42.
Hua
,
J.
,
He
,
Y.
, and
Qin
,
H.
,
2004
, “
Multiresolution Heterogeneous Solid Modeling and Visualization Using Trivariate Simplex Splines
,”
Ninth ACM Symposium on Solid Modeling and Applications
,
Genoa, Italy
,
June 9–11
, pp.
47
58
.
43.
Cohen
,
W. M. E.
, “
Representation and Extraction of Volumetric Attributes Using Trivariate Splines: A Mathematical Framework
,” Sixth ACM Symposium on Solid Modeling and Applications.
44.
Kumar
,
V.
, and
Dutta
,
D.
,
1998
, “
An Approach to Modeling & Representation of Heterogeneous Objects
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
659
667
.
45.
Sun
,
W.
, and
Hu
,
X.
,
2002
, “
Reasoning Boolean Operation Based Modeling for Heterogeneous Objects
,”
Comput.-Aided Des.
,
34
(
6
), pp.
481
488
.
46.
Qian
,
X.
, and
Dutta
,
D.
,
2003
, “
Heterogeneous Object Modeling Through Direct Face Neighborhood Alteration
,”
Comput. Graph.
,
27
(
6
), pp.
943
961
.
47.
Cavalcanti
,
P. R.
,
Carvalho
,
P. C. P.
, and
Martha
,
L. F.
,
1997
, “
Non-Manifold Modelling: An Approach Based on Spatial Subdivision
,”
Comput.-Aided Des.
,
29
(
3
), pp.
209
220
.
48.
Cheng
,
J.
, and
Lin
,
F.
,
2005
, “
Approach of Heterogeneous Bio-Modeling Based on Material Features
,”
Comput.-Aided Des.
,
37
(
11
), pp.
1115
1126
.
49.
Chen
,
M.
, and
Tucker
,
J. V.
,
2000
, “
Constructive Volume Geometry
,”
Computer Graphics Forum
, Blackwell Publishers, Boston, MA, pp.
281
293
.
50.
Adzhiev
,
V.
,
Kartasheva
,
E.
,
Kunii
,
T.
,
Pasko
,
A.
, and
Schmitt
,
B.
,
2002
, “
Hybrid Cellular-Functional Modeling of Heterogeneous Objects
,”
J. Comput. Inf. Sci. Eng.
,
2
(
4
), pp.
312
322
.
51.
3D Systems Inc.
,
1989
, “
StereoLithography Interface Specification
,” 3D Systems publications, Valencia, CA.
52.
ISO
,
2013
, “
Standard Specification for Additive Manufacturing File Format (AMF) Version 1.1
,” Geneva, Switzerland, Standard No. ISO/ASTM 52915.
53.
3MF Consortium
,
2015
, “
3D Manufacturing Format—Core Specification & Reference Guide
,” 3MF Consortium, accessed Nov. 1, 2016, http://3mf.io/wp-content/uploads/2015/04/3MFcoreSpec_1.0.1.pdf
54.
ISO,
2007
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 238: Application Protocol: Application Interpreted Model for Computerized Numerical Controllers
,”
International Standards Organization
, Geneva, Switzerland, Standard No. ISO 10303-238:2007.
55.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2007
, “
A Systematic Approach for Integrated Computer-Aided Design and Finite Element Analysis of Functionally-Graded-Material Objects
,”
Mater. Des.
,
28
(
10
), pp.
2549
2565
.
56.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
,
1995
, “
Function Representation in Geometric Modeling: Concepts, Implementation and Applications
,”
Vis. Comput.
,
11
(
8
), pp.
429
446
.
57.
Lei
,
S.
,
Frank
,
M. C.
,
Anderson
,
D. D.
, and
Brown
,
T. D.
,
2014
, “
A Method to Represent Heterogeneous Materials for Rapid Prototyping: The Matryoshka Approach
,”
Rapid Prototyping. J.
,
20
(
5
), pp.
390
402
.
58.
Savio
,
G.
,
Meneghello
,
R.
, and
Concheri
,
G.
,
2018
, “
Geometric Modeling of Lattice Structures for Additive Manufacturing
,”
Rapid Prototyping J.
,
24
(
4
), pp.
351
360
.https://www.emeraldinsight.com/doi/abs/10.1108/RPJ-07-2016-0122
59.
Terriault
,
P.
, and
Brailovski
,
V.
,
2018
, “
Modeling and Simulation of Large, Conformal, Porosity-Graded and Lightweight Lattice Structures Made by Additive Manufacturing
,”
Finite Elem. Anal. Des.
,
138
, pp.
1
11
.
60.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
81
94
.
61.
ASME
,
2009
,
Dimensioning and Tolerancing
,
American Society of Mechanical Engineers
,
New York
, Standard No. ASME Y14.5-2009.
62.
ISO
,
2012
, “
Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and Run-Out
,”
International Organization for Standardization
, Geneva, Switzerland, Standard No. ISO 1101:2012.
63.
Srinivasan
,
V.
,
1999
, “
A Geometrical Product Specification Language Based on a Classification of Symmetry Groups
,”
Comput.-Aided Des.
,
31
(
11
), pp.
659
668
.
64.
Walker
,
R. K.
, and
Srinivasan
,
V.
,
1994
, “
Creation and Evolution of the ASME Y14. 5.1 M Standard
,”
Manuf. Rev.
,
7
(
1
), pp.
16
23
.
65.
ISO 10303-242
,
2014
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 242: Application Protocol: Managed Model-Based 3D Engineering
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 10303-242.
66.
ASME,
2003
,
American Society of Mechanical Engineers, Digital Product Definition Practices ASME Y14.41-2003
,
American Society of Mechanical Engineers
,
New York
.
You do not currently have access to this content.