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Hybrid Reduction Techniques
With Covariate Shift
Optimization in High-
Dimensional Track Geometry
In discussions of track geometry, track safety takes precedence over other requirements
because its shortfall often leads to unrecoverable loss. Track geometry is unanimously posi-
tioned as the index for safety evaluation—corrective or predictive—to predict the rightful
maintenance regime based on track conditions. A recent study has shown that track
defect probability thresholds can best be explored using a hybrid index. Hence, a dimension
reduction technique that combines both safety components and geometry quality is needed.
It is observed that dimensional space representation of track parameters without prior
covariate shift evaluation could affect the overall distribution as the underlying discrepan-
cies could pose a problem for the accuracy of the prediction. In this study, the authors
applied a covariate shift framework to track geometry parameters before applying the
dimension reduction techniques. While both principal component analysis (PCA) and t-dis-
tributed stochastic neighbor embedding (TSNE) are viable techniques that express the prob-
ability distribution of parameters based on correlation in their embedded space and
inclination to maximize the variance, shift distribution evaluation should be considered.
In conclusion, we demonstrate that our framework can detect and evaluate a covariate
shift likelihood in a high-dimensional track geometry defect problem.
[DOI: 10.1115/1.4051597]
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1 Introduction
Railway infrastructure is arguably the frontline asset of a country

for passenger and freight transportation. Technically, to better opti-
mize the infrastructure’s performance, maximum attention must be
paid during the pipeline stages: design, operation, and maintenance
[1]. Additionally, rail transportation also decongests the usual traffic
flow, contributes fewer gases to the atmosphere, and can transport
an appreciable number of passengers [2]. Despite regular mainte-
nance and safety rules, the havoc wrought by the failure of track
geometry parameters runs into billions of dollars a year. According
to the National Transportation Safety Board (NTSB), approxi-
mately every 2 h, a person or vehicle is hit by a train in the
United States (US) as a result of the derailment, train-train colli-
sions, train-car collisions, and train-person collisions [3]. Records
show that the US rail network consists of about 155,000 miles of
operating routes [4], and the number of accidents for the past 5
years shown in Fig. 1 corroborates the NTSB claims [5,6]. Addi-
tionally, most railway accidents are identified with three major cat-
egories: rail equipment, highway-rail grade crossing incidents, and
fatalities [7].
On average, in the European Union (EU), one person is killed,

and one is seriously injured at railway level crossings each day
[8]. Many railroad problems have been solved with adequate geom-
etry parameterization; however, some models’ accuracy tends to
degrade as the geometry data grows [9]. A simple way to minimize
these losses is by adhering to efficient maintenance planning that

intuitively controls track quality and restores possible off-threshold
track parameters.
In the US, the annual maintenance cost for railroads is estimated

to be $1.5 billion [10]. Similarly, European countries expend about
25 billion EUR annually to maintain approximately 300,000 km of
track [11]. Anecdotally, we can conclude that most developed coun-
tries invest heavily in railroad maintenance to restore smooth rider-
ship, considering threshold limits. To proffer long-term solutions,
we consider the geometry problem with the individual parameter
thresholds shown in Table 1 and verify the variational distribution
among the geometry parameters using the covariate shift adaptation
technique.
Research on covariate shift investigation on track geometry data

has not received as much attention in transportation safety literature
as other aspects of railroad safety. For example, various machine
learning models have been utilized to investigate track defects on
multi-dimensional parameters, and a plethora of factors affecting
track quality have been identified [12]; however, little is known
about the overall influence of data point similarities and dissimilar-
ities on the prediction accuracy. According to Moreno-Torres et al.,
the disparities obtained due to the biases of the data affect the relia-
bility of the data structure, and thus the classifier (machine learning
method) accuracy is affected [13].
The study described herein attempted to investigate the effect of

inherent track parameter disparities in the distribution domain. The
parameters that were observed to have large variance were identi-
fied and corrected before the dimension reduction techniques
were applied. The results show that while the machine learning
methods may have looked sufficient for the track geometry prob-
lems, their accuracy tended to deteriorate or become less efficient
as we continued to feed our model with different geometry data.
The overall implementations revealed that the covariate shift imple-
mentation should not be downplayed where a slight change in the
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parameters could drastically affect the model accuracy. The rest of
the paper is described as follows. Section 2 discusses the track
quality index (TQI) and associated parameters. In Sec. 3 of the
paper, the authors introduce the adapted framework and the reduc-
tion techniques. The penultimate section introduces the data and its
exploratory analysis, while the final section presents the conclusion
and discussion.

2 Track Quality Index
While the continuous loading of the train system unarguably

excites the track components, causing the degradation of the track
geometry, track anomalies can be detected when the factors contrib-
uting to the accident are understood. Due to the complexity of the
infrastructure, rail accident may be challenging to eliminate.
Instead, track conditions may be improved with compliance with
safety procedures [14]. This is because a quality track system is a
requirement for safe rail operations [15]. Works of literature have
shown that the majority of rail accidents in the United States can
be described with the statistics shown in Fig. 1. However,
in-depth accident distributions due to track geometry irregularities
are less explored [16]. According to Higgins and Liu, train acci-
dents could occur as a result of track geometry defect (geo-defect)
or structural defects such as fasteners, sleepers, and clips [17]. Ivan
Gallo et al. [18] reported that 34% of the recorded train accidents in
2009 were caused by track defects, resulting in a total damage of
$108.7 million. Similarly, in 2012 over $102.9 million was spent
on track restoration due to 33% of train accidents resulting from
track defects [19]. The track manager needs to understand the

interoperability of the track components to avoid unrecoverable
train accidents. Thus, the TQI summarizes the deviation of the
track geometry parameters from the threshold standards.
The TQI is mainly represented by the track geometry parameters,

including the profile, alignment, warp, crosslevel, superelevation,
and gauge [1], and it serves as a track fitness check for safe rail oper-
ations [12]. The two broad classes of TQI are single-track indices
and combined indices. In the former model of evaluation, each
track parameter is considered per unit length to carefully assess
the signature and affirm the exact location of distress or offshoot.
A typical FRA TQI is shown in Fig. 2, which is considered for
this study; usually, a 200 ft track length measurement is used to
avoid hypersensitivity of parameters. Figure 2 layout is distinctively
defined in order to understand the geometry operations. In the com-
bined TQI, the parameters are treated as a single entity, and their
threshold levels are used to give the overall TQI. In general, the
study of TQI is important because it enables early detection of crit-
ical states of the infrastructure. To date, different TQI exist due to
the modification of track parameters to fit the country’s safety
thresholds. Some of the indexes are Canadian TQI, Poland TQI,
FRA TQI, and Netherland TQI.

Fig. 1 Federal Railroad Administration rail accident distribution by components

Table 1 Geometry safety thresholds: Class 4 track

Preventive Class 4 safety thresholds (20 m)

Alignment Profile Warp Crosslevel Gauge Superelevation

32 51 44 32 1461 85
Fig. 2 A typical track geometry index of a railway system
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In Poland, the TQI utilizes the synthetic track coefficient (J ) to
evaluate the track geometry condition based on the standard devia-
tions (SDs) of different parameters. The index is expressed in the
form:

J =
Sz + Sy + Sw + 0.5 ∗ Se

3.5
(1)

where J represents the track quality index. The standard deviations
of the geometry parameters, i.e., profile alignment, twist, and gauge,
are denoted by Sz, Sy, Sw, Se, respectively.
In the United States, the common track performance evaluator is

the roughness index established by Amtrak. The index can be cal-
culated by the average of squared differential geometry deviations
over a chord length of 20 m as follows [20]:

r2 =
1
n

∑n−1

i=1

(Gdev t+! − Gdev t)
2 (2)

In the equation above, r2 represents the track roughness value, n
is the number of measurements, Gdev t+! and Gdev t represent the
amount of gauge deviation for two consecutive years. A point of
interest is that different indices utilize different chord lengths to
evaluate the rail quality index. While the Polish TQI considers a
chord length of 10 m, the Amtrak roughness index utilizes the
20 m chord length. Other acceptable quality indices can be found
in the papers cited here [13,14].
The Canadian track quality index (CTQ) relies on a few param-

eters to ascertain the condition of the track systems. These are lon-
gitudinal level, alignment, gauge, and crosslevel. The TQI is
obtained by averaging the results

TQIi = 1000 − C ∗ σ2i (3)

TQI =

∑n
i=1

TQIi

n
(4)

For Netherlands TQI, the determining factors are the track
segment and the standard deviation (SD) of the track parameters.
Therefore, the sections that require maintenance can then be deter-
mined using the formula.

N = 10 ∗ 0.675
σi
σi

80

(5)

N represents the index for an individual track geometry
parameter.
It is important to note that while several indexes exist, the authors

considered the Amtrack FRA TQI for this study.

2.1 Knowledge Gap. Track geo-defects and track are vital
prerequisites for safe railroad operations. However, investigations
revealed that even when all track geo-defects parameters are
observed to conform within the threshold’s standards, track acci-
dent still occurs. Due to the versatility and complexity of data struc-
ture, track managers decide the maintenance scheme that best
describes track condition. Techniques that have existed are the sta-
tistical and stochastics method. Wang et al. [21] apply a statistical
model to quantify the causes of the train accident in the United
States based on the historical factors established by the FRA. The
outcome can be used in the risk assessment of freight rail or
general hazardous transportation across the North American corri-
dors [21].
While the technology is being improved continuously, their

capacity to store information also increases, leading to huge geom-
etry data. The burden to analyze the present condition of the track
system lies with the track engineer. In the past, both statistical
and stochastic methods are helpful. However, the recent size of
track data has forced analyst to machine learning methods. Lasisi
and Attoh-Okine [22] apply the principal component analysis

(PCA) to determine the track quality index of multi-dimensional
geometry data. The study shows the possibility of transforming
huge track geometry data into low sample space without compro-
mising the geometry information [22].
Even though most track issues leading to rail accidents are

reported to have come from continuous track data. Track engineers
have also included image data analysis as bait for maintenance
measurement.
One of the shortcomings identified with the machine learning

methods is the low performance with big continuous data. Inves-
tigations have shown that depending on the data structure. Some
problems are never entirely solved by the ML techniques, high-
dimensional data, stream data, and covariate data. The reason is
that the techniques are train and test on the same data. When
they are exposed to new data, their adaptability diminishes.
In order to increase the adaptability and accuracy of the
machine learning methods, the concept of data shift should be
understood.
Data shift problem has been explained in many fields with real-

life problems except railroad. Whenever a shift occurs in data dis-
tribution, the accuracy of the solving techniques is usually
affected. In railway engineering, considering a track data of 30
years, it will be difficult to isolate the likelihood of train accident
for a season since rail track response to seasonal temperature.
Thus, track data exploration for possible deterioration should be
done with a consideration of external influence. Similarly, the
clarity of the geometry vehicle’s image during maintenance
depends on the intensity of the light projected on the rail. There-
fore, an image generated in the day is expected to differ from
the night. According to Hajizadeh et al., 12,000 track defect
images, including clip, rail joint, grinding mark, etc., were col-
lected during a maintenance operation [23].
In this study, the authors consider the continuous track geometry

data to verify possible shift before applying the desired machine
learning. The track data will initially be reduced with the use of
dimension reduction techniques. After that, covariate shift is exam-
ined. The purpose of this operation is that when ML techniques are
applied without shift evaluation, there is a possibility of the same
problem occurring in future.

3 Covariate Shift Optimization
The evolving nature of rail accident in North American demands

continuous monitoring of track geometry data. Recent findings
show that it is possible to have less accurate results using
machine learning techniques due to the instability of data structure
[24]. Selection bias and a nonstationary environment are the reason
for the shift. Not handing the dataset shift in railway applications
creates an overfitted model on training samples, hence unreliable
model predictions. It is important to coordinate the distances
between the data points. Therefore, dimension reduction techniques
suffice.
There is a plethora of research on covariate shift adaptation where

the main interest is to estimate the density ratio and improve the pre-
diction in the target domain [25]. Some of the traditional methods
fail to estimate the weight, especially in a high-dimensional
space, except with robust classical algorithms [16–28]. According
to the custom of data sampling, train and test data should be
drawn from the same distribution. However, the circumstance
which violates this assumption is known as covariate shift. Often,
the problem of shift stems from the nonstationarity of the environ-
ment and selection bias, which are the primary reasons for its pecu-
liarity across study fields. We address track defect classification
problems for which the geometry features are dependent on the
entire track parameter distribution that is allowed to differ arbitrarily
from the target distribution. In railroad transportation, the evalua-
tion of a covariate shift is never considered, while its influence
could drastically affect machine learning performance [29].
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Covariate shift refers to the change in the distribution of the input
variables present in the train-test data shift, and it is widely dis-
cussed because of its canonical importance. It is the most
common type of shift, and it is now gaining more attention as
nearly every real-world dataset suffers from this problem. Data
shifts have been classified into three major categories: covariate
shift, prior probability shift, and concept shift [13–30].
In a given data distribution, drift is said to occur when the joint

distribution changes over time from i to j:

Pi(X, Y) ≠ Pj(X, Y) (6)

On the other hand, a covariate shift will occur when

Py|x = Qy|x and Qx ≠ Px (7)

When dealing with track geometry data, the input variables {x1,
x2, x3,……xn} are referred to as covariates, and each feature repre-
sents one of the track geometry parameters. Inconsistent handling of
the covariate data could result in overfitting of the training samples,
leading to unreliable model performance. The objective function
will then be the minimization of train-test divergence. In Eq. (4),
when Px<Qx and the distribution has density functions px and qx,
the standard approach is to replace the optimization error with the
estimated density ratio:

Wx = px(x)/qx(x) (8)

Furthermore, the associated risk with track geometry samples can
be idealized using Eqs. (9)–(12)

Track geometry data︸�����������︷︷�����������︸
minimized train data

:Q(x, y) = q(x)p(y|x) (9)

∫dxp(x)∫dyp(y|x)l( f (x, w), y) (10)

Track geometry data︸�����������︷︷�����������︸
minimized train data

:P(x, y) = p(x)q(y|x) (11)

∫dx q(x)∫dy p(y|x)l( f (x, w), y) (12)

In Eq. (8), the training P and hidden test Q can be modified to
reduce the error using weights average. The weight serves in the
place of eliminating the insufficient contributing data before the
reduction process. The algorithm takes on the track geometry param-
eters: Twist L, Twist R, Alignment_10m_R, Alignment_10m_L,
Alignment_20m_R, Alignment_20m_L, Profile_10m_R, Profi-
le_10m_L, Profile_20m_R, Profile_20m_L, Cant R, Cant L, Super-
elevation, Guage, to predict the deterioration factor (y), which is
dependent on the geometry parameters. For each iterative step, the
loss function (l ) in Eq. (10) measures the risk associated ( f ) with
the classification error.With Eqs. (9) and (10), the task ofminimizing
the divergence in the training data is achieved. A similar operation is
performed on the test data using Eqs. (11) and (12).
The shortfall in estimating the density ratio (w) in the expression

above is the inadaptability to high-dimensional sample space. A
more robust method is required to arrive at a low-dimensional
space. Researchers have applied several methods to correct the
shift. Reddi and Smola (2014) proposed a regularization method
that controls the stability when correcting for covariate shift.
Also, Wang and Rudin [31] explored the idea of dimensionality
reduction to keep relevant information for posterior regression.
The authors of this paper deployed unsupervised methods, PCA,
and t-distributed stochastic neighbor embedding (TSNE) to
reduce the track parameters’ dimensionality. Section 3.1 introduces
the hybrid techniques in detail.

3.1 Dimension Reduction Technique. Principal component
analysis and TSNE are two popular feature extraction techniques.

PCA is similar to TSNE except that the crowding problems with
high-dimensional data are optimized. TSNE, on the other hand,
uses the t-distribution to compute the similarity between points in
a low-dimensional space; hyperparameters like perplexity, number
of iterations, learning rate, and momentum are considered. These
techniques have been applied to a railroad problem, but a shift
was never investigated.

3.1.1 Principal Component Analysis. Principal component
analysis is a foundational technique in machine learning, and it is
agreed to be a fundamental algorithm for dimension reduction
[32]. It has been applied to many fields, such as medicine, engineer-
ing, and science [33,34]. In railroad research, the PCA analysis
serves as an important tool to better understand the distribution of
track geometry parameters. The sample space is represented as
εTmxn where m and n denote the track parameter and the inspection
dates, respectively. Intuitively, each geometry parameter, such as
gauge, superelevation, twist, or cant, is drawn from the random
vector space X. As such, X1…..Xn εTmxn. PCA projects the track
parameters “n” of the track data “X” onto a new orthogonal
space, such that the new axes assume the directions of the largest
n variance in the track data. A common problem with multiclass dis-
tribution is the uneven distribution of the individual features, affect-
ing the data’s overall performance. To cover for the inherent
anomalies, each parameter is assigned a relative objective weight,
“w,” such that the parameters are now represented as wX1+
wX2……wXn. Interestingly, since the parameters have the
maximum variance, the representation of their magnitude in low-
dimensional space gives its real value without compromising the
individual attributes.
Furthermore, we represent the eigenvector corresponding to the

largest eigenvalue (λ) of XTX :

W = argmax
‖w‖x−1

∑n

i=1

(xTi w)
2 (13)

3.1.2 t-Distributed Stochastic Neighbor Embedding. A more
robust method for solving the dimensionality problem is using
TSNE.
Given a track geometry data N= {x1, x2,…., xn}, TSNE computes

a unique probability Pj|i using distinct geometry observations xi and
xj. Mathematically, the probability Pj|i can be defined as

Pj|i = Pi|j =
exp(−‖xi − xj‖2/2σ2i )∑
k≠i exp(−‖xi − xk‖2/2σ2i )

(14)

It is expected that the track geometry inspection of two distinct
points can be represented as xi and xj. The collective data points
follow a Gaussian distribution with the probability of point similar-
ity given as Pj|i. However, a daunting situation occurs when the
expected distinct distance is zero; the difference between xi and xj
becomes zero. A way out is to adapt TSNE, which hypothetically
creates a variance within the space.
In order to create a huge variance within the closely packed data,

TSNE measures the similarities by learning a d-dimensional array
{y1, y2,…., yn}

qi|j =
(1 + ‖yi − yj‖2)−1∑
k≠i (1 + ‖xi − xk‖2)−1

(15)

We can explore the dissimilarities in a low-dimensional vector
space using the Kullback-Leibler divergence [35]

KL(P|Q) =
∑
K≠1

Pi|j log
pij
qij

(16)
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Algorithm for TSNE

Track geometry data P= {x1, x2,…., xn }
Cost function parameters: perplexity Perp
optimization parameters: number of iterations T, learning rate η,
momentum (t)
Result: low-dimensional data representation Υ (T )= {y1, y2,…., yn}
Begin

Compute pairwise probability Pj|i with perplexity Perp
Set pij =

Pj|i +Pi|j
2n

Sample initial solution Υ (0)= {y1, y2,…., yn} from ℵ(0, 10−4Ι)
For t= 1 to T do the following:
Compute low-dimensional probability qij
Compute gradient δC

δΥ
Set Υ (T) = Υ (t−1) + η δC

δΥ + (t)(Υ (t−1) − Υ (t−2))
End

4 Methodology
This study’s track geometry data represented both track inspec-

tion and maintenance data for a track Class 4 North American rail-
road. Overall inspection data showed 0.3% defects on the total track
length of 82 km. The entire segment study revealed over 50 param-
eters and three hundred thousand observations. However, we con-
sidered 15 parameters for this research. This is because not all the
parameters describe the condition of the track system. To carefully
analyze the complex geometry data against inherent feature dissim-
ilarities, the authors investigated the covariate shift and afterward
corrected the divergence using the proposed framework in Fig. 3.
The data are processed with a 16 GB Intel Core i7, 4.7 GHz. The
multistep operations leading to robust predictive analysis involves
data cleaning and dimension reduction. The process is repeated
until a covariate shift is detected and removed. The shift operator
thresholds are the phi coefficient (ψ) and operating receiver charac-
teristics (ROC). The shift is said to occur when the phi and
ROC-AUC values are above 0.05 and 0.5, respectively.

5 Exploratory Data Analysis
In this section, we explored the track geometry components for a

possible shift. The authors adopted two-way techniques to investi-
gate the level of divergence. The first step dealt with visualization,

as shown in Fig. 3, because we believed that some other parameters
might not be obvious to visualize except with a metric thresholding
algorithm. The visualization process is then preceded by analytical
divergence evaluation to detect the diverging track parameters that
cannot be captured virtually. Table 2 shows the captured track
geometry parameters that significantly diverge from the threshold.
While six of the components show no divergence, nine components
significantly diverge. The divergence of the cant parameter is shown
in Fig. 4. It means that the diverging components are the parameters
influenced by external factors and should be iterated until no param-
eter diverges. The authors establish that careful consideration for
these steps will ensure the accurate implementation of the
machine learning techniques. To further investigate the extent of
the divergence of the track geometry distribution, we subjected
the train-test data to continuous metric thresholding (phi coefficient
and ROC AUC value). The algorithm detected the covariate shift
with different weight estimations. The iteration of the covariate
shift detection continued until the required threshold was met.
Thus, no covariate shift will be recorded at that threshold. This
operation was conducted so that the new track geometry data and
the train data can be seen as having a similar distribution. We ini-
tially codified the combined train and test distribution with a
binary classifier and then predicted the test data’s probability in
the distribution.
Furthermore, we assigned a label to both train and test for the

classifier. The level of the divergence showed the extent of the dis-
similarities in the distribution. The predicted data in this study are
three parameters: no defect, profile, alignment, and superelevation.

Fig. 3 Proposed covariate optimization framework

Table 2 Detected track geometry parameters with divergence
values

Track parameters Divergence

Superelevation 0.93
Twist_L 0.97
Twist_R 0.97
Alignment_10m_R 0.73
Alignment_20m_R 0.79
Profile_10m_R 0.70
Profile_20m_R 0.77
Profile_20m_L 0.81
Cant_R 0.96
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These parameters are predicted because they have thresholds
defined by FRA with which the condition of a track geometry can
be concluded.

Covariate Shift Algorithm

Input Xtrain and Xnew

For i in Xtrain, assign YES if covariate shif exists, NO otherwise
Assign 0 to the prediction label and 1 to the new label

Combine track geometry parameter Xtest and Xnew with their prediction
labels Yt and Ynew

Establish a distinct dataset (X, Y )T
Perform a test on (X, Y)T � (X, Y)∼train and (X, Y)∼test

Investigate a binary classifier κ̂ on (X, Y)∼train and (X, Y)∼test to detect shift
Compute a shift value using the expected label from line 3 and predicted

value from line 5
If ψ > 0.2 and F1 > 0.7 return YES

else NO
End

6 Results and Discussion
It is essential to adequately verify any data distribution before the

application of machine learning. This will guide the analyst against
anomaly that could negatively influence the accuracy of the techni-
que applied. In this study, we considered the implications of covar-
iate shift evaluation of track geometry parameters. The raw
geometry data contained several parameters where only a few of
the parameters describe the condition of the track system. Thus, a
reduction technique was considered. Prior to the implementation
of the reduction techniques, the track geometry parameters were
identified and resolved, as described in Tables 2 and 3. Each time
we applied the techniques, we varied the predictors, i.e., alignment,
profile, and no defect. The performance of the techniques differed
because of the techniques of iterating parameters. This decision
gave rise to each techniques being utilized with respective parame-
ters. The track defects study with and without reduction techniques
are presented in Table 4. Figures 5 and 6 show the visual represen-
tation of the predictive parameters in space with the PCA and TSNE
techniques. From the figures, we observed that alignment is more
dominated. It means that the clustered parameters have extremely
minimal distances. Therefore, a shift in such instances can be
detected with PCA.
A similar classification could be seen with profile, except that the

TSNE detected the defect well enough compared with the PCA. A
point of interest to the authors is the sudden drop in the accuracy of
TSNE for profile detection. We found that the prediction can be
enhanced with parameter tuning, such as perplexity. The perplexity
creates a clearer topology in a distribution where the size, distance,

and shape clustered. We evaluated the predictor with perplexity 1,
10, 25, and 50 to ascertain a better prediction (Fig. 7).
Additionally, higher perplexity supports the redistribution of data

points in space. The purpose of the perplexity tuning is to confirm
information not captures by the TSNE holistically. In general, we
observed that dimension reduction successfully is applied to multi-
dimensional track geometry problems with consideration for shift
detection to achieve better performance from the methods.
The evaluation of the track geometry with the dominant defects

(profile and alignment) and without defect is presented in
Table 4. The evaluators considered are two reduction techniques
(PCA and TSNE) and linear model (parametrized geometry data).
The accuracy result shows that the dimension reduction techniques
are useful to analyze track geometry data with or without a likeli-
hood of covariate shift. The accuracy is defined using the formula
in Eq. (17)

ACC =
TP + TN

TP + TN + FP + FN
(17)

FNR =
FN

TP + FN
(18)

FPR =
FP

TN + FP
(19)

The True Positive (TP) shows the number of defects correctly
assigned to the positive class, True Negative (TN) shows the
number of defects correctly assigned to the negative class, False
Positive (FP) denotes the number of defects assigned by the
model to the positive class, which in reality belong to the negative
class. False Negative (FN) denotes the number of defects assigned
by the model to the negative class, which in reality belong to the
positive class.

Fig. 4 Left Cant distribution with metric algorithm thresholding

Table 3 Covariate shift detection of track geometry data

ψ Coefficient ROC AUC Covariate shift

0.72 0.9 Yes
0.61 0.87 Yes
0.55 0.82 Yes
0.43 0.77 Yes
0.16 0.5 No
0.96 0 Yes

Table 4 The prediction accuracy of each technique for the track
geometry defects

No defect

Predictor TPR FPR Accuracy

Unparameterized geometry data 0.9546 0.003 0.9976
TSNE-3D components 0.9135 0.067 0.9333
PCA 3 0.9135 0.067 0.9333

Profile
Predictor TPR FPR Accuracy
Unparameterized geometry data 0.9626 0.0017 0.9989
TSNE-3D components 0.3582 0.4736 0.4333
PCA 3 0.8765 0.1053 0.9000

Alignment
Predictor TPR FPR Accuracy
Unparameterized geometry data 0.9743 0.0015 0.9986
TSNE-3D components 0.8116 0.1772 0.8228
PCA 3 0.7972 0.2000 0.8000

TPR—True Positive Rate.
FPR—False Positive Rate.
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Fig. 5 Principal component analysis of the track geometry defects

Fig. 6 TSNE analysis of the track geometry defects
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7 Conclusion
One of the major challenges that affect the adaptability of vanilla

machine learning to track geometry problems is the theory of “feature
assumption.” Here, the applied techniques are modelled to behave
like all data distributions are identical and independently distributed.
However, real-life problems tend to violate these assumptions. The
field of machine learning has long been solving the issues of the rail-
road by unravelling the intricacies of complex data structures. Anec-
dotally, the application of covariate shift adaptation to railroad
problems is relatively new, and we hope to explore it extensively.
This technique is relevant in the sense that when data are trained to
understand a certain trend, then detecting the trend of a new distribu-
tion could affect the performance of the machine learning technique.
This study addresses the issues of covariate shift detection opti-

mization in track geometry problems. The track data was first sub-
jected to covariate shift evaluation to curb the technically
imbalanced distribution that could affect the accuracy of the
machine learning techniques. Afterward, dimension reduction tech-
niques were applied to reproduce the shift-cleared geometry data in
a low-dimensional space. The results show that unique precision
can be made without fear of future model degradation if the shift
is adequately explored. Additionally, reduction techniques are
also valuable for working with complex geometry data. Future
work will consider robust covariate shift minimization techniques
that would separate closely packed track data points, which are
usually problematic for machine learning methods. Hence,
improved track geometry defect predictions would be established.
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