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An Adaptive Curvature-Guided
Approach for the Knot-Placement
Problem in Fitted Splines
This paper presents an adaptive and computationally efficient curvature-guided algo-
rithm for localizing optimum knot locations in fitted splines based on the local minimiza-
tion of an objective error function. Curvature information is used to narrow the
searching area down to a data subset where the local error function becomes one-
dimensional, convex, and bounded, thus guaranteeing a fast numerical solution. Unlike
standard curvature-guided methods, typically relying on heuristic rules, the novel method
here presented is based on a phenomenological approach as the error function to be
minimized represents geometrical properties of the curve to be fitted, consequently reduc-
ing case-sensitivity issues and the possibility of defining spurious knots. A knot-
readjustment procedure performed in the vicinity of a newly created knot has the ability
of dispersing knots from otherwise highly knot-populated regions, a feature known to
generate undesired local oscillations. The performance of the introduced method is tested
against three other methods described in the literature, each handling the knot-
placement problem via a different paradigm. The quality of the fitted splines for several
datasets is compared in terms of the overall accuracy, the number of knots, and the com-
puting efficiency. It is demonstrated that the novel algorithm leads to a significantly
smaller knot vector and a much lower computing time, while preserving or improving the
overall accuracy. [DOI: 10.1115/1.4040981]
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1 Introduction

Current applications in computer-aided design make an exten-
sive use of spline-based geometry, where the spline’s accuracy
(i.e., its error against its associated dataset) is typically the main
criterion assessing its quality [1–3]. In more specialized applica-
tions, computational efficiency becomes equally relevant, where
even small savings can have a significant impact in terms of the
computational burden [4–6]. For example, the computing time
involved in generating a spline has a direct influence in analyses
requiring multiple (i.e., hundreds or thousands) updates of spline-
based geometry during a nonlinear analysis or topological optimi-
zation [7–8]. These new trends demand more efficient approaches
for generating optimized splines.

In spite of formidable advances in the field, the optimum fitting
of splines is still considered a complex endeavor, particularly for
datasets with high curvature, noise, and/or high density, where a
key input for achieving a high-quality fit is a suitable knot-vector
providing the location and parameterization of each knot along
the arc-length suggested by the dataset [1–3,7–17]. In principle,
the knot-placement problem can be stated as a multi-objective,
multivariable, nonconvex, and multimodal constrained optimiza-
tion problem, where the sought variables are the number and

location of the spline’s knots as well as its control points [13,14].
For large general datasets, this approach is difficult to solve,
requires intensive computational resources, and cannot guarantee
convergence to a feasible result in view of the many mathematical
and geometrical constraints involved. The problem can be greatly
simplified by prespecifying the number and location of the knots,
leading to a linear system of equations solved for the control
points, where the overall error of the generated spline with respect
to the dataset is sought to be minimized by iteratively relocating
and/or re-parameterizing the knots [10–12]. This recursive proce-
dure, although more robust than the former, can still be computa-
tionally expensive for datasets with high density; in addition, a
globally optimum solution cannot be guaranteed [1–3,15].

For datasets featuring high density and/or high geometrical
complexity, where relatively many knots are required to capture
the underlying features suggested by the dataset, alternative opti-
mization methods are preferred. An example of the latter is
genetic algorithm, a particular type of metaheuristic methods,
where an initial group of potential solutions with randomly gener-
ated genes is iteratively combined and mutated, selecting those
with the best phenotype to survive the next generation
[1–3,14–18]. These class of methods have a number of significant
drawbacks, including the specification of parameters not intrinsic
to the problem of curve reconstruction (i.e., a certain initial size of
the population), the lack of mathematical proof of convergence,
and sometimes an erratic iterative behavior. Yet another paradigm
for solving the knot-placement problem is based on the curvature
of the dataset. This class of empirical methods assume that the
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optimal locations of knots, i.e., those minimizing the error of the
fitted spline against the dataset, are found in the vicinity of high
curvature regions [9–12,19]. Although computationally more effi-
cient than metaheuristic methods, the approach may suffer from
some degree of case-sensitivity and can therefore not ensure a
truly optimal solution for general datasets. The problem of curva-
ture extraction from raw data, particularly for the case of dense
and noisy data sets, is a main topic in its own right and many
methods have been proposed for tackling a wide range of applica-
tions [20–30].

The knot-placement method proposed in this paper uses curva-
ture information for defining a few initial knots, as well as for nar-
rowing the searching region for inserting additional knots. The
location of each new knot is governed by the minimization of an
objective error function measuring the local deviation of a data
subset (i.e., a small portion of the whole dataset) to an increasingly
refined piecewise linear approximation to the sought spline. This
data subset gets smaller with each new knot defined, thus an
increasingly refined solution can be obtained at an increasingly
smaller penalty. By working at a local level (i.e., the data subset),
the error function to be minimized becomes one-dimensional, con-
vex, and bounded, hence a fast convergence to a locally optimum
knot-location can be guaranteed, where the term “optimum” is
here used in the context of a mathematical optimization procedure.
It is highlighted that this method does not require multiple evalua-
tions of the spline, while new knots are defined because the error
measure is evaluated locally. Once all knots are defined, the
method proceeds to generate the spline once and for all. The new
method includes a “knot-readjustment” scheme, an innovative fea-
ture absent in the methods reviewed by these authors, bringing the
ability of readjusting the location of existing knots in the vicinity
of a newly defined knot while maintaining the “locally iterative”
feature (i.e., without resorting to multiple spline’s iterations). This
knot-readjustment reduces the development of highly knot-
populated regions due to high-curvature or geometrical complex-
ity, a primary cause of spline’s local oscillations in fitted splines.
Finally, it is stressed that the novelty and scope of the introduced
method is circumscribed to the process of knot-placement, while
all other steps necessary to complete the spline generation (i.e., fil-
tering, curvature extraction, and parameterization) are here per-
formed by standard techniques [1–3,9–12,29–33].

The rest of the paper is organized as follows: Sec. 2 briefly
explains the mathematical nomenclature for defining splines in
the context of curve fitting, while Sec. 3 details the knot-
placement algorithm here proposed. In Sec. 4, the introduced
method is tested against other three methods borrowed from the
literature [1,9,12], each based on a different paradigm for han-
dling the knot-placement problem, for several sample datasets. A
comparative analysis of the generated splines is carried out in
terms of their accuracy, number of knots, and computing effi-
ciency involved. Finally, Sec. 5 offers some concluding remarks.

2 Brief Background on Splines

A kth-degree spline BðuÞ can be written as [32]

BðuÞ ¼
Xn

i¼0

Ni;k uð ÞQi (1)

where u 2 ½u0; um� is a parameterized position along the curve’s
path representing its arc-length as a function of the total path-
length, u0andum represent the curve’s first and last such positions,
respectively, Ni;kðuÞ are nþ 1 basis functions (i ¼ 0…n) having a
common degree k, and Qi are a set of nþ 1 control points. The
knot-vector T ¼ ½u0; u1;…; um� gathers mþ 1 knots each repre-
senting a junction between the individual polynomial segments
conforming the spline. The number of knots, the number of con-
trol points, and the degree of the spline cannot be set independ-
ently but are tied by the equality nþ 1 ¼ m� k. In a curve fitting

context [31], where an ordered set of points Pjðj ¼ 0…p; typically
p� mþ 1 for dense data) is to be fitted by a kth-degree spline,
each data point is first parameterized according to its expected
arc-length position along the spline’s path, then knots are assigned
to a few feature points according to a certain criterion (the main
topic of this paper). Afterward, the nþ 1 basis functions Ni;k are
built recursively [32,34] for a predefined degree n, and the nþ 1
control points Qi are found by minimizing an error function (typi-
cally a square error) between the points Pj and the corresponding
points generated by the spline

@

@Qi

Xp

j¼0

B uð Þ � Pj

� �2

" #
¼ 0; for i ¼ 0…n (2)

The goodness of fit can be measured via the root-mean-square
error ERMS as defined by

ERMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pþ 1

Xp

j¼0

B uð Þ � Pj

� �2

vuut (3)

3 The Knot-Placement Algorithm

The knot-placement algorithm introduced in this work is next
exemplified with reference to the generic illustrations shown in
Figs. 1(a)–1(d) and the flowchart of Fig. 2, where it is assumed
that a filtered curvature function is already available. The algo-
rithm starts by defining the initial knots (here called “parent
knots”) at feature datapoints corresponding to the end-points and
local maxima of the curvature function, labeled in Fig. 1(a) as K0

to K6. A polygon traced along these knots in the dataset (see
Fig. 1(b)) can be viewed as a piecewise linear approximation to
the sought spline and provides a geometrical interpretation to the
knot-placement scheme. In this polygon, segment t� 1 is
bounded by knots Kt�1 and Kt, while segment t is bounded by
knots Kt and Ktþ1. The datapoints contained within the region
encompassed by any given segment t are referred to as data subset
t, representing a narrowed searching region where the algorithm
will later perform a mathematical optimization provided some
condition is met, as explained next.

The integral of the absolute value of the curvature ( jj j) along a
given data subset t bounded by knots Kt and Ktþ1 (see Fig. 1(b))
represents the total angle ht swept by the tangent vector, and it is a
measure of how sharply a curve bends

ht ¼
ðKtþ1

Kt

jj j (4)

If ht surpasses some given threshold hmax (to be defined later), it is
an indication that a new knot needs to be inserted at some suitable
location within the data subset t in order to provide an improved
description. Given this scenario, data subset t (and its associated
segment t) will be partitioned by inserting a new knot Ktþc (where
0 < c < 1), that is, c is a unity-normalized length between knots

Kt and Ktþ1, thus refining the original segment KtKtþ1 into two

subsegments KtKtþc and KtþcKtþ1 (see Fig. 1(c)).
The optimum location is chosen as to minimize an error func-

tion representing the accumulated deviation of both subsegments
with respect to the datapoints contained in the data subset t, as
explained next. As illustrated in Fig. 1(d), the orthogonal devia-
tion ei of any point Fi contained within the first subsegment
KtKtþc with respect to the chord described by its end-knots can be
measured as

ei ¼ Pi � P0i
�� �� ¼ Pi � Ktð Þ N

Nj j (5)

where P0i is the normal projection of Pi onto the chord KtKtþc and
N is a vector perpendicular to it, defined by a 90 deg counter-
clockwise rotation of the chord
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N ¼ 0 �1

1 0

� �
Pi � Ktð Þ (6)

Therefore, ei can be expressed in terms of the known x; y coordi-
nates of Fi (Pi;x,Pi;y) and Kt (Pt;x,Pt;y), and of the unknown
y-coordinate of Ktþc (Ktþc;y)

ei Pi;Ktþcð Þ¼
Pi;y�Kt;yð Þ Ktþc;x�Kt;xð Þþ Kt;x�Pi;xð Þ Ktþc;y�Kt;yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ktþc;x�Kt;xð Þ2þ Ktþc;y�Kt;yð Þ2
q

(7)

where Ktþc;x is the x-coordinate of knot Ktþc, a known quantity
for any given Ktþc;y. Similarly, the orthogonal deviation ej of any

point Pj contained within the second subsegment KtþcKtþ1 with
respect to the chord described by its end-knots can be expressed
in terms of the known x; y coordinates of Pj and Ktþ1, and of the
unknown y-coordinate of Ktþc

ej Pj;Ktþcð Þ

¼ Pj;y�Ktþc;yð Þ Ktþ1;x �Ktþc;yð Þ þ Ktþc;x �Pj;xð Þ Ktþ1;y�Ktþc;yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ktþ1;x �Ktþc;xð Þ2þ Ktþ1;y �Ktþc;yð Þ2

q
(8)

Therefore, the error function to be minimized can be built as

Fig. 1 Generic illustrations for describing the knot-placement algorithm. The solid lines represent the original polygon seg-
ments, the dashed lines represent the new subsegments, and the dotted lines represent the dataset. (a) Representative curva-
ture function and “parent knots”; (b) piecewise linear polygon (solid line), segments (and associated data subsets) t21 and t;
(c) a new knot Kt1c is inserted at an optimum location within segment t; and (d) orthogonal deviations ei and ej .

Fig. 2 Flowchart of the main algorithm

Journal of Computing and Information Science in Engineering DECEMBER 2018, Vol. 18 / 041013-3

D
ow

nloaded from
 http://asm

edc.silverchair.com
/com

putingengineering/article-pdf/18/4/041013/5998930/jcise_018_04_041013.pdf by guest on 18 April 2024



E Ktþcð Þ ¼
Xtþc

i¼t

e2
i þ

Xtþ1

j¼tþc

e2
j (9)

corresponding to a locally convex function bounded by Kt and
Ktþ1 and with a single unknown Ktþc;y for which a fast numerical
solution can be guaranteed via any closed method (i.e., bisection).
With the new knot Ktþc defined, segment t (and its associated data
subset) is partitioned to reflect this new vertex (see Fig. 1(d)), thus
representing a closer approximation to the sought spline within
the analyzed data subset. The above description completes the
main algorithm introduced in this work, which should be per-
formed at all data subsets for which ht � hmax. Keep in mind that,
every time a data subset is partitioned by inserting a new knot,
two new data subsets are created and each needs to be checked
whether or not it meets the above criterion in which case the algo-
rithm is applied for inserting a new knot.

With respect to the threshold hmax defined earlier, it was dem-
onstrated in Ref. [35] that a cubic spline experiences locally small
deflections for h < p=6, therefore the criterion hmax ¼ p=6 was
here adopted for all the numerical experiments carried out, where
exclusively cubic splines were generated. In more specialized
applications, this threshold can be specified by the user to allow
some control on the refinement sought in the knot-vector, where
lower values will result in more knots to be defined (although the
latter number needs not being specified a priori).

3.1 Knot Re-Adjustment. The main algorithm described ear-
lier can be slightly modified to include an innovative feature
absent in all methods so far reviewed by these authors, consisting
in updating the location of all the existing knots in the vicinity of
a newly inserted knot, while still working at the local (i.e., data
subset) level. In the context of this work, “the vicinity of a newly
inserted knot” refers to that portion of the dataset encompassed by
two parent knots (which are fixed by design) where a new knot
has just been inserted. The creation of any new knot, particularly
in already highly knot-populated regions, will bring out new rela-
tionships between existing knots around its vicinity, which current
locations could no longer be optimum. This effect can propagate,
although with decreasing strength, in both forward and backward
directions of the dataset (that is, for arc-length positions above
and below the newly inserted knot, respectively), thus all the
existing knots between the newly inserted knot and the two
bounding parent-knots (which represent fixed boundaries thus
their location cannot be updated) should be readjusted to new
optimum locations. As confirmed in the numerical experiments
reported in Sec. 4, the most obvious effect of this knot-
readjustment technique is that the existing knots in the vicinity of
a newly inserted knot are “pushed” away from it, thus dissolving
to some extent the occurrence of highly clustered knot regions, a
well-known pathology which generates high-frequency local
oscillations in splines.

The idea outlined earlier can be easily implemented by an
almost identical procedure to that already described in Sec. 3 and
Fig. 1 for defining knot Ktþc, that is, by minimizing Eq. (9) for a
given knot located between two bounding knots. To this end, the
same figures exemplifying the insertion of knot Ktþc between its
bounding knots Kt and Ktþ1 (see Figs. 1(c) and 1(d)) are still valid
for exemplifying the relocation of any given knot bounded by any
given two knots, except that now the current location of the knot
to be readjusted can provide a very close initial guess for finding
its new location, thus making an already inexpensive calculation
even cheaper. This can be summarized in the following two-stage
(forward and backward) pseudocode:

(1) Forward readjustment: proceeding from the knot Ktþ1 (i.e.,
located one after the newly inserted knot Ktþc) and up to
the knot located just before the next forward parent knot, as
follows: for i¼ 1 up to i¼ (index of the forward parent
knot� 1): knot Ktþi (bounded by the knots Ktþði�1Þþc and

Ktþi�1) is readjusted to an updated position Ktþiþc via
Eq. (9); end.

(2) Backward readjustment: proceeding from the knot Kt (i.e.,
located one before the newly inserted knot Ktþc) and down
to the knot located just before the next backward parent
knot: for i¼ 0 down to i¼ (index of the downstream parent
knotþ 1): knot Kt�i (bounded by the knots Kt�ðiþ1Þ and
Kt�iþc) is readjusted to an updated position Kt�i�c via
Eq. (9); end. The above pseudocode is represented by the
bottom box of the flowchart illustrated in Fig. 2.

4 Numerical Experiments

The performance of the knot-placement algorithm introduced in
this work was tested against three representative methods bor-
rowed from the literature [1,9,12], each handling the knot-
placement problem via a different paradigm, by comparing the
generated splines and their properties for a variety of sample data-
sets. The selected methods are shortlisted in Table 1, labeled as A,
B, C, and D, briefly describing the main features of each. In this
table, “curvature-guided” refer to methods which rely on a curva-
ture function for localizing knots; “globally iterative” imply recur-
sive generation of splines with the objective of reducing an
overall measure of error (deemed an expensive calculation), while
locally iterative refers to iterations performed at a narrowed data
subset but without generating the spline (thus relatively inexpen-
sive); finally, “heuristic” and “meta-heuristic” refer to the reliance
on user-defined rules (not necessarily phenomenological) govern-
ing the decision-making process for localizing knots.

Nine dense sample datasets, each briefly described in Table 2
and shown in Fig. 3, were numerically generated with varying lev-
els of complexity and noise-content, and processed by all methods
for yielding corresponding splines. The noise was generated by
the MATLAB function “rand” based on a uniform distribution and
with an average peak-to-peak amplitude equivalent to some per-
centage of the dataset’s maximum amplitude (between 0% and
6%), added to the y-coordinate of the data points (vertical axis in
Fig. 3) in all cases except when indicated otherwise in Table 2.
For example, noise was added to the x-coordinate (horizontal
axis) of sample dataset 8 for the purpose of simulating sampling-
uncertainty, while in sample dataset 9 different amounts of noise
were added to both coordinates. In all cases, cubic splines were
generated and a threshold of hmax ¼ p=6 was used for method A
(as justified in Sec. 3.1). Sample datasets 1–4, featuring a
function-like behavior, were used to compare methods A and B as
the latter can only handle this type of datasets. Sample datasets
5–9, corresponding to parametric curves which cannot be
expressed as functions, were used to compare methods A, C,
and D.

The comparative analysis was based on three criteria: (a) the
overall ERMS error of the fitted spline against the dataset, (b) the
size of the knot-vector (i.e., the number of knots), and (c) the com-
puting time involved in tackling the knot-placement process
alone, leaving aside all other tasks related to the spline’s genera-
tion. While the ERMS error and the number of knots of a given
spline can be easily measured, finding an objective measure of the
computing time is more challenging as this is biased by the coding
style used by the programmer. Therefore, the following approach
was here adopted: those repetitive tasks associated with the knot-
placement process were submitted to MATLAB built-in functions
(running on a processor IntelVR CoreTM i7-4600 U @ 2.10 GHz 64-
bit Windows OS with 16GB in RAM), which directly reported the
time consumed in delivering a result. For method A, the comput-
ing time was represented by the accumulated time reported by the
MATLAB function “fminbnd” for solving each submitted nonlinear
equation associated with the method. The computed time
accounted for method B was represented by the assembly and
solution of a linear system for a given knot-vector, as reported by
the MATLAB function “spap2” for all global iterations requested
(20, 50, and 100, in this study).
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For method C, various arithmetic operations associated with the
process of defining the knots were accounted for, while the
computing time consumed by method D was that reported by
the MATLAB function “spap2” for all the global iterations needed to
converge to a final knot-vector. In the following description, the
computing time and the number of iterations required by each
method are reported as a range, according to the minimum and
maximum values found during the analyses of all sample datasets.

4.1 Method a Versus Method B. Comparative results
between methods A and B are summarized in Table 3. The most
striking although expected difference observed between both
methods is related to the computing time, with method B consum-
ing between 50 and 6260 times that of method A, depending on
the dataset considered. The reason behind this can be explained as
follows: method B took between 18 and 99 local iterations to
solve a linear system of equations for each knot-vector proposed,
and this process occurred for each of the 20, 50, and 100 global
iterations requested, for a total computing time between 6 and
75 s. On the other hand, method A took about 3–6 local iterations
to solve a one-dimensional, convex, and bounded nonlinear equa-
tion for each knot defined, for a total computing time between
0.02 and 0.14 s.

Beyond the demanding computational resources, a significant
drawback of method B is that its iterative behavior does not fol-
low an increasing monotonic trend in terms of accuracy. That is,
more iterations do not necessarily yield higher accuracy, and the
latter is not necessarily linked to a smaller knot-vector. On one
hand, the error and the number of knots exhibited an opposite
trend in sample dataset 1, with the error growing with increasing
iterations (1.19, 1.51, and 2.52� 10�3, respectively), while the

number of knots decreased (58, 49, and 38, respectively), and
with the largest error coincident with the smallest number of
knots. On the other hand, the analysis for sample dataset 2 yielded
the lowest error (1.93� 10�3) at 20 iterations, while the smallest
knot-vector (13 knots) was obtained at 50 iterations. Yet a differ-
ent behavior was observed for sample dataset 3, where a low-
high-low zigzagging trend in the error was observed as iterations
increased, but this was associated with an inverted trend (high-
low-high) in the number of knots. Again, the highest error
(75.1� 10�3) was coincident with the smallest number of knots
(22). A particular observation for sample dataset 4 is that an iden-
tical number of knots (16 knots) was associated with two very dif-
ferent error measures, 41.0 and 18.1� 10�3, for 20 and 50
iterations, respectively. This erratic behavior leaves the user with
no choice but to request a large number of iterations to identify
the best solution, which often cannot be unambiguously asserted,
thus exacerbating an already heavy computational burden.

In spite of the huge difference in computing time, method A
consistently yielded a number of knots at least comparable but
often much lower than the low bound provided by method B, for
all sample datasets.

The following remark is worth mentioning with regard to the
lowest number of knots yielded in sample dataset 3 (22 knots in
method B versus 35 knots in method A, suggesting a superior per-
formance of method B): the solution found by method B really
represents a faulty fit in view of the very high error obtained
(75.1� 10�3 in method B versus 7.65� 10�3 in method A). This
can happen in any situation in which very few knots attempt to
capture a very complex signal; the best knot-vector in this case is
still provided by method A, and a similar remark can be made for
sample dataset 4.

Table 1 Selected methods

Method Label Main features

This work A Curvature-guided
Locally iterative
Knot-placement criteria based on a mathematical optimization

Yoshimoto et al [1] B Based on genetic algorithms
Globally iterative, obtaining solutions at 20, 50 and 100 global iterations
Knot-placement criteria based on metaheuristic rules

Li et al [9] C Curvature-guided
Non-iterative
Knot-placement criteria based on heuristic rules.

Park and Lee [12] D Curvature-guided
Globally iterative
Knot-placement criteria based on heuristic rules.

Table 2 Sample datasets

Label Type Noise level Main features

1 Function 0.3% A lightly damped oscillatory signal superimposed over a ramp-like curve; very low noise-
content.

2 Function 0.6% A highly damped oscillatory signal featuring one rapid oscillation followed by two
increasingly slower oscillations; low noise-content.

3 Function 3% A complex, random-like signal conformed of several superimposed high-frequency sig-
nals mounted over a ramp-like signal; moderate noise-content.

4 Function 6% A high frequency sinusoidal superimposed over a low frequency sinusoidal; high noise-
content.

5 Parametric 0% A sequence of low-to-high-to-low curvature regions; no inflexion points; noise-free.
6 Parametric 0% Two extended low-curvature regions joined by a short high-curvature knee; noise-free.
7 Parametric 1% Two sequences of a moderate high-curvature followed by an extended low-curvature

region, both joined by a short high-curvature knee; low noise-content.
8 Parametric 1.3% @X An extended low curvature region followed by a rapid change to a high curvature region

containing a knee; unlike the previous sample-datasets, the low noise-content is added
to the x-coordinate, simulating sampling uncertainty.

9 Parametric 1% @X 0.5% @Y Extended quasilinear regions with a superimposed slow oscillatory signal; the low noise-
content is added both to the x- and y-coordinates.
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With regard to noise-sensitivity, both methods seemed equally
vulnerable as evidenced by the sample dataset 4, exhibiting the
highest noise-content (6%) and about 10 times higher errors than
those yielded by the sample dataset 1, having a very low noise-
content (0.3%). Furthermore, both methods seemed equally vul-
nerable to the level of complexity of the dataset. This can be
noticed in the complex sample dataset 3, yielding errors of compa-
rable magnitude to those of the less complex sample case 4 in

spite of the latter having a higher noise-content. It is reminded
that the highest error observed in Table 3 (75.1� 10�3) is really
associated with a faulty fit caused by very few knots attempting to
fit a complex curve, rather than to the noise level. Having said
this, method A was able to at least closely match the low bound
error of method B for all sample datasets, while often obtaining
much lower error measures and consistently producing smaller
knot vectors.

Fig. 3 The nine sample datasets used in this work for comparing the quality of the splines generated by each of the
selected methods
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4.2 Method a Versus Methods C and D. Comparative
results between methods A, C, and D are summarized in Table 4.
These methods are classified as “curvature-guided,” relying on a
curvature function as key input for the knot-placement process,
where the quality of the curvature function (overall smoothness,
well-defined and accurate extrema and inflexion points, etc.) has a
direct impact on the algorithm’s ability to search for suitable knot
locations. In the interest of performing an objective comparison of
the knot-placement approaches only, without possible bias intro-
duced by the quality of the input data and other side-processes, a
standardized curvature function was sought to be supplied to the
three methods.

On one hand, method C [9] reports a specific technique for
obtaining a filtered curvature function, implemented in this work
for the purpose of a faithful reproduction of the method. However,
it was found that, although it worked fairly well for datasets with
little noise-content (<1%), it yielded unusable results for datasets
with moderate-to-high levels of noise (3–6%). In comparison, the
digital filter adopted in this work [29,30] consistently yielded a
higher-quality curvature function and, when applied to method C,
better end results in terms of spline’s accuracy and number of
knots. On the other hand, method D does not report using a spe-
cific technique for obtaining the curvature function [12]. In view
of the above, it was decided to adopt the filter described in Refs.
[29] and [30] to obtain a curvature function to be supplied to the
three methods. In all cases, a chord-length parameterization was

used, as reported for methods C and D [9,12] and also adopted by
method A. The aforementioned scheme ensures that any differ-
ence in the comparative analyses can be attributed to each meth-
od’s knot-placement process.

With regard to the number of knots, method A consistently
yielded the lowest measure by a factor of 1–6, depending on the
compared method and sample dataset. In some cases, all three
methods yielded similar error measures for a very different number
of knots, which is evidence that the extra knots defined by methods
C and D represent redundant information. Moreover, method A
was able to yield at least comparable but often much lower error
measures than the low bound obtained in all sample datasets. As
expected, a significant difference was found in the computing time
consumed by the “locally iterative” method A versus the “globally
iterative” method D, with the latter taking as much as 4.5–56 times
that of the former, according to the information reported by the
MATLAB functions involved. However, it was not possible to reli-
ably measure the computing time of method C as the arithmetic
operations involved in its knot-placement process did not require
any specific MATLAB function to be recalled, thus the estimation
could be biased by the coding style used. Nonetheless, although it
is almost certain that the noniterative nature of method C lends to
the shortest computing time among those compared, estimations of
its performance during the sample dataset 9, which yielded a large
number of knots (253), indicate that its computing time was about
twice as that of method A (which defined 43 knots only). This sug-
gests that, in general, the computing time of methods A and B lie
within the same order of magnitude.

4.3 The Effect of Knot-Adjustment in Method A. The
assessment of the quality of a fitted spline on the basis of its ERMS

error only is somewhat subjective, as the global nature of this tool
makes it almost insensitive to spline’s local oscillations which,
although small, can potentially generate significant inaccuracies
when the splines are submitted to arithmetic and differential oper-
ations, as occurring in recently developed applications [6]. During
the course of this research, it was observed that a primary cause of
such oscillations is the existence of tightly clustered knots, a con-
dition likely to develop at regions of high curvature or geometrical
complexity if the knot-placement method does not have the ability
of readjusting the location of existing knots in the vicinity of a
newly defined knot. The knot-placement scheme of Method A
does contemplate such readjustment and one of its practical impli-
cations is that the existing knots in the vicinity of highly knot-
populated regions are likely to be “pushed away” from a newly
defined knot, thus reducing the possibility of local oscillations.
This feature is absent in methods C and D, which keep adding
knots to an existing set until some error criterion is met, while
method B does not readjust individual knots but rather conforms a
whole new knot-vector at every iteration.

An example of the effectiveness of the knot-readjustment
scheme of method A can be found in Table 5 and Fig. 4, the latter
displaying zoomed views of the “knee” region in sample dataset 6
as well as the splines and correspondent knots generated by meth-
ods A, C, and D.

This case study was selected because all methods yielded iden-
tical number of knots (10) and very low ERMS errors, thus it is pos-
sible to investigate the effect of the knot-readjustment scheme
without the bias induced by differences in those two criteria. To
this end, method A was applied without and with the readjustment
scheme in which results are shown in Figs. 4(a) and 4(b), respec-
tively. The effect of the readjustment in method A can be noticed
straightaway, first generating a spline with an oscillatory behavior
around the dataset (without) then a smooth fit virtually superim-
posed over the dataset (with). This improvement can be attributed
to the wider spacing between knots in Fig. 4(b) as compared to
Fig. 4(a), the direct result of the knot-readjustment scheme.
Although the three methods yielded very low error measures, the
effect of the knot-readjustment in method A led to a reduction of
about 60% in the ERMS error.

Table 3 Method A versus method B

Sample
dataset Method

ERMS

(10��3)
# of

knots

Normalized
computing

time

1 A 1.19 25 1
B (20 iter) 1.19 58 1264
B (50 iter) 1.51 49 3200
B (100 iter) 2.52 38 6260

2 A 2.34 14 1
B (20 iter) 1.93 15 50
B (50 iter) 1.98 13 129
B (100 iter) 1.94 14 253

3 A 7.65 35 1
B (20 iter) 12.6 67 658
B (50 iter) 75.1 22 1627
B (100 iter) 7.53 72 3387

4 A 19.5 15 1
B (20 iter) 41.0 16 156
B (50 iter) 18.1 16 367
B (100 iter) 30.5 10 768

Table 4 Method A versus C and D

Sample
dataset Method

ERMS

(� 10�3)
# of

knots

Normalized
computing

time

5 A 0.92 25 1
C 0.99 29 <1
D 3.69 30 7.6

6 A 0.17 10 1
C 0.41 10 <1
D 0.35 10 4.5

7 A 2.87 20 1
C 3.31 78 <1
D 3.00 35 11

8 A 4.36 15 1
C 4.24 80 <1
D 4.45 25 9.4

9 A 3.23 43 1
C 2.85 253 �2
D 3.24 55 56
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5 Conclusion

This paper introduced an adaptive curvature-guided knot-
placement algorithm for fitting splines, demonstrated to be particu-
larly effective for datasets with high curvature and/or high data
point density for which the location of the knots is a nontrivial task.
The scope of the method is restricted to the knot-placement
scheme, while all other tasks required for generating the spline
(i.e., filtering, curvature extraction, and parameterization) were
performed via the existing techniques. The main strengths of the
novel algorithm can be stated as (1) efficient curvature-guided
approach based on a phenomenological criterion instead of heuris-
tic rules, leading to a compact-sized knot-vector, (2) locally itera-
tive (i.e., at a data subset level), leading to very low computing
times, and (3) adaptive, that is, virtually free of user-intervention.
The introduced method was tested against three established meth-
ods, each tackling the knot-placement problem via a different para-
digm. In all numerical experiments performed, the introduced
method consistently obtained comparable results (at least) or
greatly exceeded (in the vast majority of cases) the best results
obtained by the benchmarks in terms of the three criterions consid-
ered: (a) RMS error (up to ten times less), (b) number of knots (up
to six times less), and (c) computing time (up to 6260 times less).

A knot-readjustment scheme, developed as part of the new
method, can be applied to the existing knots in the vicinity of a newly
created knot. This provides the ability of dispersing knots from oth-
erwise highly knot-populated regions typically occurring at high

curvature zones, an undesirable feature in fitted splines known to
generate local oscillations. In summary, the novel methodology pre-
sented in this paper has been shown to be a significant contribution
to the state of the art in spline-based curve fitting. Compact knot-
vectors lead to high data compression ratios, which is why the new
method should be useful for a host of applications where the curve
fitting process may have to be repeated frequently while maintaining
high accuracy, as demonstrated by the authors’ group in Ref. [6].
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Table 5 Effect of the knot-readjustment scheme in method A

Sample dataset Method ERMS (10� 10�4) # of knots (total) # of knots within zoomed region

6 A (with knot-readjustment) 1.777 10 5
A (without knot-readjustment) 5.277 10 5

C 4.087 10 7
D 3.480 10 6

Fig. 4 Splines and correspondent knots generated by methods A, C, and D for a zoomed view of the sample dataset 6.
Method A is applied (a) without the knot-readjustment scheme and (b) with the knot-readjustment scheme. Insets: Zoom into
the critical near-vertical regions.
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