Abstract

Engineering cyber-physical systems (CPS) is complex and time-consuming due to the heterogeneity of the involved engineering domains and the high number of physical and logical interactions of their subsystems. Model-based systems engineering (MBSE) approaches tackle the complexity of developing CPS by formally and explicitly modeling subsystems and their interactions. Newer approaches also integrate domain-specific models and modeling languages to cover different aspects of CPS. However, MBSE approaches are currently not fully applicable for CPS development since they do not integrate formal models for physical and mechanical behavior to an extent that allows to seamlessly link mechanical models to the digital models and reuse them. In this paper, we discuss the challenges arising from the missing integration of physics into MBSE and introduce a model-based methodology capable of integrating physical functions and effects into an MBSE approach on a level where detailed physical effects are considered. Our approach offers a fully virtual, model-based development methodology covering the whole development process for the development of CPS. Evaluating this methodology on a real automotive use case demonstrates benefits regarding virtual development and functional testing of CPS. It shows potentials regarding automated development and continuous integration of the whole CPS including all domains. As an outlook of this paper, we discuss potential further research topics extending our development workflow.

References

1.
Törngren
,
M.
, and
Sellgren
,
U.
,
2018
, “Complexity Challenges in Development of Cyber-Physical Systems,”
Principles of Modeling
,
M
Lohstroh
,
P
Derler
, and
M
Sirjani
, eds.,
Springer International Publishing
,
Cham
, pp.
478
503
.
2.
Olivain
,
N.
,
Tiefenbacher
,
P.
, and
Kohl
,
J.
,
2021
, “
Bayesian Structural Learning for an Improved Diagnosis of Cyber-Physical Systems
,” arXiv:2104.00987.
3.
SEBoK Editorial Board
,
2021
,
The Guide to the Systems Engineering Body of Knowledge (SEBoK), v. 2.5
,
RJ
Cloutier
, ed.,
INCOSE Systems Engineering Research Center
,
Hoboken, NJ
.
4.
Drave
,
I.
,
Rumpe
,
B.
,
Wortmann
,
A.
,
Berroth
,
J.
,
Hoepfner
,
G.
,
Jacobs
,
G.
,
Spuetz
,
K.
,
Zerwas
,
T.
,
Guist
,
C.
, and
Kohl
,
J.
,
2020
, “
Modeling Mechanical Functional Architectures in SysML
,”
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems
,
Virtual
,
Oct. 16–23
,
ACM
,
New York, NY
, pp.
79
89
.
5.
France
,
R.
, and
Rumpe
,
B.
,
2007
, “
Model-Driven Development of Complex Software: A Research Roadmap
,”
Future of Software Engineering (FOSE ‘07)
,
Minneapolis, MN
,
May 23–25
,
IEEE
, pp.
37
54
.
6.
Koller
,
R.
,
1998
,
Konstruktionslehre für den Maschinenbau: Grundlagen zur Neu- und Weiterentwicklung technischer Produkte mit Beispielen
,
Springer Berlin
,
Berlin, Heidelberg
.
7.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
,
2007
,
Engineering Design: A Systematic Approach
, 3rd ed,
Springer
,
London
.
8.
Broy
,
M.
,
2018
, “On Architecture Specification,”
SOFSEM 2018: Theory and Practice of Computer Science
,
AM
Tjoa
,
L
Bellatreche
,
S
Biffl
,
J
van Leeuwen
, and
J
Wiedermann
, eds.,
Springer International Publishing
,
Cham
, pp.
19
39
.
9.
Markthaler
,
M.
,
Kriebel
,
S.
,
Salman
,
K. S.
,
Greifenberg
,
T.
,
Hillemacher
,
S.
,
Rumpe
,
B.
,
Schulze
,
C.
,
Wortmann
,
A.
,
Orth
,
P.
, and
Richenhagen
,
J.
,
2018
, “
Improving Model-Based Testing in Automotive Software Engineering
,”
2018 IEEE/ACM 40th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP)
,
Gothenburg, Sweden
,
May 30–June 1
, pp.
172
180
.
10.
Endres
,
A.
, and
Rombach
,
D.
,
2003
,
A Handbook of Software and Systems Engineering: Empirical Observations, Laws and Theories
,
Pearson Addison Wesley
,
Harlow
.
11.
INCOSE
,
2007
,
INCOSE Systems Engineering Vision 2020
,
INCOSE
,
San Diego, CA
.
12.
Alur
,
R.
,
2015
,
Principles of Cyber-Physical Systems
,
The MIT Press
,
Cambridge, MA
.
13.
Eigner
,
M.
,
Gilz
,
T.
, and
Zafirov
,
R.
,
2012
, “
Proposal for Functional Product Description as Part of a PLM Solution in Interdisciplinary Product Development
,”
DS 70: Proceedings of DESIGN 2012, the 12th International Design Conference
,
Dubrovnik, Croatia
,
May 21–24
.
14.
Wheatcraft
,
L. S.
,
2010
, “
Everything You Wanted to Know About Interfaces, But Were Afraid to Ask
,”
Incose Int. Symp.
,
20
(
1
), pp.
1132
1149
.
15.
Conway
,
M. E.
,
1968
, “
How Do Committees Invent?
,”
Datamation Mag.
,
14
(
4
), pp.
28
31
.
16.
Stahl
,
T.
,
Völter
,
M.
,
Bettin
,
J.
,
Czarnecki
,
K.
, and
Stockfleth
,
B. v.
,
2006
,
Model-Driven Software Development: Technology, Engineering, Management
,
Wiley
,
Chichester
.
17.
Selic
,
B.
,
2003
, “
The Pragmatics of Model-Driven Development
,”
IEEE Softw.
,
20
(
5
), pp.
19
25
.
18.
Gamma
,
E.
,
Helm
,
R.
,
Johnson
,
R.
, and
Vlissides
,
J.
,
1994
,
Design Patterns: Elements of Reusable Object-Oriented Software
,
Pearson International
,
Reading, MA
.
19.
Hölldobler
,
K.
,
Michael
,
J.
,
Ringert
,
J. O.
,
Rumpe
,
B.
, and
Wortmann
,
A.
,
2019
, “
Innovations in Model-Based Software And Systems Engineering
,”
JOT
,
18
(
1
), p.
1
.
20.
Ptolemaeus
,
C.
,
2014
,
System Design, Modeling, and Simulation Using Ptolemy II
,
Ptolemy.org
,
Berkeley
.
21.
Moeser
,
G.
,
Albers
,
A.
, and
Kumpel
,
S.
,
2015
, “
Usage of Free Sketches in MBSE Raising the Applicability of Model-Based Systems Engineering for Mechanical Engineers
,”
2015 IEEE International Symposium on Systems Engineering (ISSE)
,
Rome, Italy
,
Sept. 28–30
,
IEEE
, pp.
50
55
.
22.
Broy
,
M.
, and
Stølen
,
K.
,
2001
,
Specification and Development of Interactive Systems: Focus on Streams, Interfaces, and Refinement
,
Springer
,
New York
.
23.
Broy
,
M.
,
2012
, “System Behaviour Models With Discrete and Dense Time,”
Advances in Real-Time Systems
,
S
Chakraborty
, and
J
Eberspächer
, eds.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
3
25
.
24.
Drave
,
I.
,
Hillemacher
,
S.
,
Greifenberg
,
T.
,
Kriebel
,
S.
,
Kusmenko
,
E.
,
Markthaler
,
M.
,
Orth
,
P.
, et al
,
2019
, “
SMArDT Modeling for Automotive Software Testing
,”
Softw. Pract. Exper.
,
49
(
2
), pp.
301
328
.
25.
Ebert
,
R.
,
Jolianis
,
J.
,
Kriebel
,
S.
,
Markthaler
,
M.
,
Pruenster
,
B.
,
Rumpe
,
B.
, and
Salman
,
K. S.
,
2019
, “
Applying Product Line Testing for the Electric Drive System
,”
Proceedings of the 23rd International Systems and Software Product Line Conference—Volume A
,
ACM
,
New York, NY
, pp.
14
24
.
26.
Bayer
,
T.
,
Day
,
J.
,
Dodd
,
E.
,
Jones-Wilson
,
L.
,
Rivera
,
A.
,
Shougarian
,
N.
,
Susca
,
S.
, and
Wagner
,
D.
,
2021
, “
Europa Clipper: MBSE Proving Ground
,”
2021 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 6–13
27.
Dubos
,
G.
,
Schreiner
,
S.
,
Wagner D
,
A.
,
Jones
,
G.
,
Kerzhner
,
A.
, and
Kaderka
,
J.
,
2016
, “
Architecture Modeling on the Europa Project
,”
AIAA SPACE 2016
,
Long Beach, CA
,
Sept. 13–16
.
28.
Chung
,
S. H.
,
Bayer
,
T. J.
,
Cole
,
B.
,
Cooke
,
B.
,
Dekens
,
F.
,
Delp
,
C.
, and
Lam
,
D.
,
2012
, “
Model-Based Systems Engineering Approach to Managing Mass Margin
,”
5th International Workshop on Systems & Concurrent Engineering for Space Applications
,
Lisbon, Portugal
,
Oct. 17–19
.
29.
Koller
,
R.
, and
Kastrup
,
N.
,
1998
,
Prinziplösungen zur Konstruktion technischer Produkte
, 2nd ed.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
30.
Gausemeier
,
J.
,
Dorociak
,
R.
,
Pook
,
S.
,
Nyßen
,
A.
, and
Terfloth
,
A.
,
2010
, “
Computer-Aided Cross-Domain Modeling of Mechatronic Systems
,”
DS 60: Proceedings of DESIGN 2010, the 11th International Design Conference
,
Dubrovnik, Croatia
,
May 17–20
, pp.
723
732
.
31.
Moeser
,
G.
,
Kramer
,
C.
,
Grundel
,
M.
,
Neubert
,
M.
,
Kümpel
,
S.
,
Scheithauer
,
A.
,
Kleiner
,
S.
, and
Albers
,
A.
,
2015
, “Fortschrittsbericht zur modellbasierten Unterstützung der Konstrukteurstätigkeit durch FAS4M,”
Tag des Systems Engineering
,
S. O
Schulze
, and
M.
Christian
, eds.,
Carl Hanser Verlag
,
Munich
, pp.
69
78
.
32.
Wölkl
,
S.
, and
Shea
,
K.
,
2009
, “
A Computational Product Model for Conceptual Design Using SysML
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
635
645
.
33.
Berroth
,
J.
,
Jacobs
,
G.
,
Kroll
,
T.
, and
Schelenz
,
R.
,
2016
, “
Investigation on Pitch System Loads by Means of an Integral Multi Body Simulation Approach
,”
J. Phys.: Conf. Ser.
,
753
(
11
), p.
112002
.
34.
Pasch
,
G.
,
Jacobs
,
G.
, and
Berroth
,
J.
,
2020
, “
NVH-Systemsimulation eines Traktors mit hydrostatisch-mechanischem Leistungsverzweigungsgetriebe
,”
Landtechnik
,
75
(
4
), pp.
301
315
.
35.
Jaeger
,
M.
,
Drichel
,
P.
,
Schröder
,
M.
,
Berroth
,
J.
,
Jacobs
,
G.
, and
Hameyer
,
K.
,
2020
, “
Die Kopplung elektrotechnischer und strukturdynamischer Domänen zu einem NVH-Systemmodell eines elektrischen Antriebsstrangs
,”
Elektrotech. Inftech.
,
137
(
4–5
), pp.
258
265
.
36.
Zerwas
,
T.
,
Jacobs
,
G.
,
Spütz
,
K.
,
Hoepfner
,
G.
,
Drave
,
I.
,
Berroth
,
J.
,
Guist
,
C.
,
Konrad
,
C.
,
Rumpe
,
B.
, and
Kohl
,
J.
,
2021
, “
Mechanical Concept Development Using Principle Solution Models
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1097
(
1
), p.
12001
.
37.
Hoepfner
,
G.
,
Jacobs
,
G.
,
Zerwas
,
T.
,
Drave
,
I.
,
Berroth
,
J.
,
Guist
,
C.
,
Rumpe
,
B.
, and
Kohl
,
J.
,
2021
, “
Model-Based Design Workflows for Cyber-Physical Systems Applied to an Electric-Mechanical Coolant Pump
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1097
(
1
), p.
12004
.
38.
Rumpe
,
B.
,
2016
,
Modeling With UML
,
Springer International Publishing
,
Cham
.
39.
Glinz
,
M.
,
2002
, “
Statecharts For Requirements Specification—As Simple As Possible, As Rich As Needed
,”
Proceedings of the ICSE 2002 International Workshop on Scenarios and State Machines: Models, Algorithms and Tools
,
Orlando, FL
,
May 20
.
40.
Broy
,
M.
,
2010
,
Cyber-Physical Systems
,
Springer Berlin Heidelberg
,
Berlin/Heidelberg
.
41.
Stachowiak
,
H.
,
1973
,
Allgemeine Modelltheorie
,
Springer
,
Wien
.
42.
Perini
,
A.
,
Susi
,
A.
, and
Avesani
,
P.
,
2013
, “
A Machine Learning Approach to Software Requirements Prioritization
,”
IEEE Trans. Softw. Eng.
,
39
(
4
), pp.
445
461
.
43.
Juhnke
,
K.
,
Nikic
,
A.
, and
Tichy
,
M.
,
2021
, “
Clustering Natural Language Test Case Instructions as Input for Deriving Automotive Testing DSLs
,”
J. Object Technol.
,
20
(
3
), p.
5:1
.
44.
Modelica Association
,
2020
,
Modelica Standard Library—Version 4.0.0
,
Modelica Association
,
Linköping, Sweden
.
45.
Dalibor
,
M.
,
Michael
,
J.
,
Rumpe
,
B.
,
Varga
,
S.
, and
Wortmann
,
A.
,
2020
, “Towards a Model-Driven Architecture for Interactive Digital Twin Cockpits,”
Conceptual Modeling
,
G
Dobbie
,
U
Frank
,
G
Kappel
,
SW
Liddle
, and
HC
Mayr
, eds.,
Springer International Publishing
,
Cham
.
46.
Negri
,
E.
,
Fumagalli
,
L.
, and
Macchi
,
M.
,
2017
, “
A Review of the Roles of Digital Twin in CPS-Based Production Systems
,”
Procedia Manuf.
,
11
, pp.
939
948
.
47.
Allemang
,
R.
,
Spottswood
,
M.
, and
Eason
,
T.
,
2014
, “A Principal Component Analysis (PCA) Decomposition Based Validation Metric for Use With Full Field Measurement Situations,”
Model Validation and Uncertainty Quantification
,
3
,
HS
Atamturktur
,
B
Moaveni
,
C
Papadimitriou
, and
T
Schoenherr
, eds.,
Springer International Publishing
,
Cham
, pp.
249
263
.
48.
Golafshan
,
R.
,
Dascaliuc
,
C.
,
Jacobs
,
G.
,
Roth
,
D.
,
Berroth
,
J.
, and
Neumann
,
S.
,
2021
, “
Damage Diagnosis of Cardan Shafts in Mobile Mining Machines Using Vibration Analysis
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1097
(
1
), p.
12019
.
49.
Bibow
,
P.
,
Dalibor
,
M.
,
Hopmann
,
C.
,
Mainz
,
B.
,
Rumpe
,
B.
,
Schmalzing
,
D.
,
Schmitz
,
M.
, and
Wortmann
,
A.
,
2020
, “Model-Driven Development of a Digital Twin for Injection Molding,”
Advanced Information Systems Engineering
,
S.
Dustdar
,
E.
Yu
,
C.
Salinesi
,
D.
Rieu
, and
V.
Pant
, eds.,
Springer International Publishing
,
Cham
, pp.
85
100
.
You do not currently have access to this content.