Abstract

In this paper, a physics-based method to inversely determine wheel—rail contact area in their lifecycle is proposed by introducing a continuous optimization pipeline including filtering and projection procedures. First, the element connectivity parameterization method is introduced to construct continuous objections with discrete contact pairs and formulate the physics-based optimization model. Second, the radius-based filter equation is employed for smoothing the design variables to improve the numerical stability and the differentiable step function is introduced to project smoothed design variables into 0–1 discrete integer space to ensure the solution of the optimization model yields discrete contact pairs. Finally, the method of moving asymptotes is constructed for iteratively updating wheel—rail contact area by analyzing the sensitivity of relaxed optimization formulation with respect to design variables until the algorithm converged. The experimental result shows the effectiveness of the proposed method to inversely determine the wheel—rail contact points in their lifecycle compared to the line tracing method; to the best of our knowledge, it is the first attempt to consider wheel—rail contact area in lifecycle service with both the measured profile and the predicted profile data by gradient-based optimization method.

References

1.
Deng
,
Y.
,
Liu
,
L.
,
Li
,
M.
,
Jiang
,
M.
,
Peng
,
B.
, and
Yang
,
Y.
,
2023
, “
A Data-Driven Wheel Wear Prediction Model for Rail Train Based on LM-OMP-NARXNN
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021012
.
2.
Wang
,
Q.
,
Wang
,
Z.
,
Mo
,
J.
, and
Zhang
,
L.
,
2022
, “
Nonlinear Behaviors of the Disc Brake System Under the Effect of Wheel− Rail Adhesion
,”
Tribol. Int.
,
165
, pp.
1
13
.
3.
Wei
,
Z.
,
Núnez
,
A.
,
Liu
,
X.
,
Dollevoet
,
R.
, and
Li
,
Z.
,
2020
, “
Multi-Criteria Evaluation of Wheel/Rail Degradation at Railway Crossings
,”
Tribol. Int.
,
144
, pp.
1
13
.
4.
Dudás
,
L.
,
2013
, “
Modelling and Simulation of a New Worm Gear Drive Having Point-Like Contact
,”
Eng. Comput.
,
29
(
3
), pp.
251
272
.
5.
Vollebregt
,
E.
, and
Segal
,
G.
,
2014
, “
Solving Conformal Wheel–Rail Rolling Contact Problems
,”
Vehicle Syst. Dyn.
,
52
(
sup1
), pp.
455
468
.
6.
Vollebregt
,
E.
,
2021
, “
Detailed Wheel/Rail Geometry Processing With the Conformal Contact Approach
,”
Multibody Syst. Dyn.
,
52
(
2
), pp.
135
167
.
7.
Iwnicki
,
S.
,
2006
,
Handbook of Railway Vehicle Dynamics
,
CRC Press
,
Boca Raton, FL
.
8.
Sun
,
Y.
,
Zhai
,
W.
,
Ye
,
Y.
,
Zhu
,
L.
, and
Guo
,
Y.
,
2020
, “
A Simplified Model for Solving Wheel-Rail Non-Hertzian Normal Contact Problem Under the Influence of Yaw Angle
,”
Int. J. Mech. Sci.
,
174
, pp.
1
13
.
9.
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
A Simple Procedure for the Solution of Three-Dimensional Wheel/Rail Conformal Contact Problem
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
034501
.
10.
Lewis
,
R.
,
Dwyer-Joyce
,
R. S.
,
Olofsson
,
U.
,
Pombo
,
J.
,
Ambrosio
,
J.
,
Pereira
,
M.
,
Ariaudo
,
C.
, and
Kuka
,
N.
,
2010
, “
Mapping Railway Wheel Material Wear Mechanisms and Transitions
,”
Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit
,
224
(
3
), pp.
125
137
.
11.
Tan
,
T.
,
Li
,
Y.
, and
Li
,
X.
,
2011
, “
A Smoothing Method for Zero–One Constrained Extremum Problems
,”
J. Optim. Theory Appl.
,
150
(
1
), pp.
65
77
.
12.
Li
,
Y.
,
Tan
,
T.
, and
Li
,
X.
,
2011
, “
Convergence of a Continuous Approach for Zero-One Programming Problems
,”
Appl. Math. and Comput.
,
217
(
9
), pp.
4691
4698
.
13.
Li
,
Y.
,
Tan
,
T.
, and
Li
,
X.
,
2010
, “
A Gradient-Based Approach for Discrete Optimum Design
,”
Struct. Multidiscipl. Optim.
,
41
(
6
), pp.
881
892
.
14.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
.
15.
Wang
,
K.
,
1984
, “
The Track of Wheel Contact Points and the Calculation of Wheel/Rail Geometric Contact Parameters
,”
J. Southwest Jiaotong Univ.
,
1
(
10
), pp.
89
98
.
16.
Kanehara
,
H.
, and
Fujioka
,
T.
,
2002
, “
Measuring Rail/Wheel Contact Points of Running Railway Vehicles
,”
Wear
,
253
(
1–2
), pp.
275
283
.
17.
Liu
,
H.
,
Yu
,
Z.
,
Guo
,
W.
,
Jiang
,
L.
, and
Kang
,
C.
,
2019
, “
A Novel Method to Search for the Wheel–Rail Contact Point
,”
Int. J. Struct. Stability Dyn.
,
19
(
11
), pp.
1
21
.
18.
Malvezzi
,
M.
,
Meli
,
E.
,
Falomi
,
S.
, and
Rindi
,
A.
,
2008
, “
Determination of Wheel–Rail Contact Points With Semianalytic Methods
,”
Multibody Syst. Dyn.
,
20
(
4
), pp.
327
358
.
19.
Falomi
,
S.
,
Malvezzi
,
M.
, and
Meli
,
E.
,
2011
, “
Multibody Modeling of Railway Vehicles: Innovative Algorithms for the Detection of Wheel–Rail Contact Points
,”
Wear
,
271
(
1–2
), pp.
453
461
.
20.
Yang
,
X.
,
Gu
,
S.
,
Zhou
,
S.
,
Zhou
,
Y.
, and
Lian
,
S.
,
2015
, “
A Method for Improved Accuracy in Three Dimensions for Determining Wheel/Rail Contact Points
,”
Vehicle Syst. Dyn.
,
53
(
11
), pp.
1620
1640
.
21.
Escalona
,
J. L.
, and
Aceituno
,
J. F.
,
2019
, “
Multibody Simulation of Railway Vehicles With Contact Lookup Tables
,”
Int. J. Mech. Sci.
,
155
, pp.
571
582
.
22.
Escalona
,
J. L.
,
Aceituno
,
J. F.
,
Urda
,
P.
, and
Balling
,
O.
,
2020
, “
Railway Multibody Simulation With the Knife-Edge-Equivalent Wheel–Rail Constraint Equations
,”
Multibody Syst. Dyn.
,
48
(
4
), pp.
373
402
.
23.
Chen
,
Y.
,
Jiang
,
L.
,
Li
,
C.
,
Li
,
J.
,
Shao
,
P.
,
He
,
W.
, and
Liu
,
L.
,
2022
, “
A Semi-Online Spatial Wheel-Rail Contact Detection Method
,”
Int. J. Rail Transport.
,
10
(
6
), pp.
730
748
.
24.
Santamaría
,
J.
,
Vadillo
,
E. G.
, and
Gómez
,
J.
,
2006
, “
A Comprehensive Method for the Elastic Calculation of the Two-Point Wheel–Rail Contact
,”
Vehicle Syst. Dyn.
,
44
(
sup1
), pp.
240
250
.
25.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2009
, “
On the Contact Search Algorithms for Wheel/Rail Contact Problems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041001
.
26.
Ren
,
Z.
,
Iwnicki
,
S. D.
, and
Xie
,
G.
,
2011
, “
A New Method for Determining Wheel–Rail Multi-Point Contact
,”
Vehicle Syst. Dyn.
,
49
(
10
), pp.
1533
1551
.
27.
Ren
,
Z.
,
2013
, “
Multi-Point Contact of the High-Speed Vehicle-Turnout System Dynamics
,”
Chin. J. Mech. Eng.
,
26
(
3
), pp.
518
525
.
28.
Aceituno
,
J. F.
,
Urda
,
P.
,
Briales
,
E.
, and
Escalona
,
J. L.
,
2020
, “
Analysis of the Two-Point Wheel-Rail Contact Scenario Using the Knife-Edge-Equivalent Contact Constraint Method
,”
Mech. Mach. Theory
,
148
, pp.
1
19
.
29.
Pombo
,
J. C.
, and
Ambrósio
,
J. A. C.
,
2008
, “
Application of a Wheel–Rail Contact Model to Railway Dynamics in Small Radius Curved Tracks
,”
Multibody Syst. Dyn.
,
19
(
1–2
), pp.
91
114
.
30.
Karmarkar
,
N.
,
Resende
,
M. G. C.
, and
Ramakrishnan
,
K. G.
,
1991
, “
An Interior Point Algorithm to Solve Computationally Difficult Set Covering Problems
,”
Math. Program.
,
52
(
1–3
), pp.
597
618
.
31.
Audet
,
C.
,
Hansen
,
P.
,
Jaumard
,
B.
, and
Savard
,
G.
,
1997
, “
Links Between Linear Bilevel and Mixed 0–1 Programming Problems
,”
J. Optim. Theory Appl.
,
93
(
2
), pp.
273
300
.
32.
Kiwiel
,
K. C.
,
Lindberg
,
P. O.
, and
Nõu
,
A.
,
2000
, “
Bregman Proximal Relaxation of Large-Scale 0–1 Problems
,”
Comput. Optim. Appl.
,
15
(
1
), pp.
33
44
.
33.
Ng
,
K. M.
,
2022
, “
A Continuation Approach for Solving Nonlinear Optimization Problems With Discrete Variables
,”
Ph.D. dissertation
,
Stanford University
,
San Francisco, CA
.
34.
Murray
,
W.
, and
Ng
,
K. M.
,
2010
, “
An Algorithm for Nonlinear Optimization Problems With Binary Variables
,”
Comput. Optim. Appl.
,
47
(
2
), pp.
257
288
.
35.
Yoon
,
G. H.
, and
Kim
,
Y. Y.
,
2007
, “
Topology Optimization of Material-Nonlinear Continuum Structures by the Element Connectivity Parameterization
,”
Int. J. Numer. Methods Eng.
,
69
(
10
), pp.
2196
2218
.
36.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
37.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
(
4–5
), pp.
401
424
.
38.
Ogawa
,
S.
, and
Yamada
,
T.
,
2022
, “
Minimizing Creep Deformation via Topology Optimization
,”
Finite Elements Anal. Des.
,
207
, pp.
1
13
.
39.
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Filters in Topology Optimization Based on Helmholtz-Type Differential Equations
,”
Int. J. Numer. Methods Eng.
,
86
(
6
), pp.
765
781
.
40.
Wang
,
L.
,
Zhao
,
X.
, and
Liu
,
D.
,
2022
, “
Size-Controlled Cross-Scale Robust Topology Optimization Based on Adaptive Subinterval Dimension-Wise Method Considering Interval Uncertainties
,”
Eng. Comput.
,
38
(
6
), pp.
5321
5338
.
41.
Svanberg
,
K.
,
2007
, “
MMA and GCMMA, Versions September 2007
,”
Optim. Syst. Theory
, p.
104
.
42.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
43.
Ren
,
D.
,
Tao
,
G.
,
Wen
,
Z.
, and
Jin
,
X.
,
2021
, “
Wheel Profile Optimisation for Mitigating Flange Wear on Metro Wheels and Verification Through Wear Prediction
,”
Vehicle Syst. Dyn.
,
59
(
12
), pp.
1894
1915
.
44.
Yang
,
Y.
,
Liu
,
L.
,
Yi
,
B.
, and
Chen
,
F.
,
2018
, “
An Accurate and Fast Method to Inspect Rail Wear Based on Revised Global Registration
,”
IEEE Access
,
6
, pp.
57267
57278
.
45.
Yang
,
Y.
,
Liu
,
L.
,
Li
,
M.
,
Yang
,
G.
, and
Yi
,
B.
,
2020
, “
Sparse Scaling Iterative Closest Point for Rail Profile Inspection
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011003
.
46.
Yang
,
Y.
,
Liu
,
L.
,
Yi
,
B.
, and
Chen
,
F.
,
2019
, “
Dynamic Inspection of a Rail Profile Under Affine Distortion Based on the Reweighted-Scaling Iterative Closest Point Method
,”
Meas. Sci. Technol.
,
30
(
11
), pp.
1
11
.
47.
Yi
,
B.
,
Yang
,
Y.
,
Yi
,
Q.
,
Dai
,
W.
, and
Li
,
X.
,
2017
, “
Novel Method for Rail Wear Inspection Based on the Sparse Iterative Closest Point Method
,”
Meas. Sci. Technol.
,
28
(
12
), pp.
2458
2467
.
You do not currently have access to this content.