Abstract

Calibration of the X-ray powder diffraction (XRPD) experimental setup is a crucial step before data reduction and analysis, and requires correctly extracting individual Debye–Scherrer rings from the 2D XRPD image. This problem is approached using a clustering-based machine learning framework, thus interpreting each ring as a cluster. This allows automatic identification of Debye–Scherrer rings without human intervention and irrespective of detector type and orientation. Various existing clustering techniques are applied to XRPD images generated from both orthogonal and nonorthogonal detectors, and the results are visually presented for images with varying inter-ring distances, diffuse scatter, and ring graininess. The accuracy of predicted clusters is quantitatively evaluated using an annotated gold standard and multiple cluster analysis criteria. These results demonstrate the superiority of density-based clustering for the detection of Debye–Scherrer rings. Moreover, the given algorithms impose no prior restrictions on detector parameters such as sample-to-detector distance, alignment of the center of diffraction pattern, or detector type and tilt, as opposed to existing automatic detection approaches.

References

1.
Cullity
,
B.
,
1957
, “
Elements of X-Ray Diffraction
,”
Am. J. Phys.
,
25
(
6
), pp.
394
395
.
2.
Shahzad
,
S.
,
Khan
,
N.
,
Nawaz
,
Z.
, and
Ferrero
,
C.
,
2018
, “
Automatic Debye–Scherrer Elliptical Ring Extraction via a Computer Vision Approach
,”
J. Synchrotron. Radiat.
,
25
(
2
), pp.
439
450
.
3.
Bramble
,
M.
,
Flemming
,
R.
, and
McCausland
,
P.
,
2014
, “
Grain Size, ‘Spotty’ XRD Rings, and Chemin: Two-Dimensional X-Ray Diffraction as a Proxy for Grain Size Measurement in Planetary Materials
,”
Lunar and Planetary Science Conference
,
The Woodlands, TX
,
Mar. 17–21
, Vol. 45, p.
1658
.
4.
Bramble
,
M. S.
,
Flemming
,
R. L.
, and
McCausland
,
P. J.
,
2015
, “
Grain Size Measurement From Two-Dimensional Micro-x-Ray Diffraction: Laboratory Application of a Radial Integration Technique
,”
Am. Mineral.
,
100
(
8–9
), pp.
1899
1911
.
5.
Vallcorba
,
O.
, and
Rius
,
J.
,
2019
, “
d2Dplot: 2D X-Ray Diffraction Data Processing and Analysis for Through-the-Substrate Microdiffraction
,”
J. Appl. Crystallogr.
,
52
(
2
), pp.
478
484
.
6.
Hammersley
,
A.
,
2016
, “
Fit2d: a Multi-Purpose Data Reduction, Analysis and Visualization Program
,”
J. Appl. Crystallogr.
,
49
(
2
), pp.
646
652
.
7.
Hinrichsen
,
B.
, and
Dinnebier
,
R.
,
2006
, “
Powder3D: An Easy to Use Program for Data Reduction and Graphical Presentation of Large Numbers of Powder Diffraction Patterns
,”
Zeitschrift fur Kristallographie Suppl.
,
23
(
2006
), pp.
231
236
.
8.
Ashiotis
,
G.
,
Deschildre
,
A.
,
Nawaz
,
Z.
,
Wright
,
J. P.
,
Karkoulis
,
D.
,
Picca
,
F. E.
, and
Kieffer
,
J.
,
2015
, “
The Fast Azimuthal Integration Python Library: Pyfai
,”
J. Appl. Crystallogr.
,
48
(
2
), pp.
510
519
.
9.
Hart
,
M. L.
, and
Drakopoulos
,
M.
,
2013
, “
Weighted Least Squares Fit of an Ellipse to Describe Complete or Spotty Diffraction Rings on a Planar 2D Detector
,” arXiv preprint arXiv:1311.5430.
10.
Cervellino
,
A.
,
Giannini
,
C.
,
Guagliardi
,
A.
, and
Ladisa
,
M.
,
2006
, “
Folding a Two-Dimensional Powder Diffraction Image Into a One-Dimensional Scan: A New Procedure
,”
J. Appl. Crystallogr.
,
39
(
5
), pp.
745
748
.
11.
Rajiv
,
P.
,
Hinrichsen
,
B.
,
Dinnebier
,
R.
,
Jansen
,
M.
, and
Joswig
,
M.
,
2007
, “
Automatic Calibration of Powder Diffraction Experiments Using Two-Dimensional Detectors
,”
Powder. Diffr.
,
22
(
1
), pp.
3
19
.
12.
Nagargoje
,
A.
,
Kankar
,
P. K.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2021
, “
Performance Evaluation of the Data Clustering Techniques and Cluster Validity Indices for Efficient Toolpath Development for Incremental Sheet Forming
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031001
.
13.
Xie
,
J.
,
Mao
,
S.
,
Zhang
,
Z.
, and
Liu
,
C.
,
2023
, “
Data-Driven Approaches for Characterization of Aerodynamics on Super High-Speed Elevators
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p. 031004.
14.
Sabbagh
,
R.
, and
Ameri
,
F.
,
2019
, “
A Framework Based on K-Means Clustering and Topic Modeling for Analyzing Unstructured Manufacturing Capability Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011005
.
15.
Choi
,
S.-S.
,
Cha
,
S.-H.
, and
Tappert
,
C. C.
,
2010
, “
A Survey of Binary Similarity and Distance Measures
,”
J. Syst., Cybern. Inf.
,
8
(
1
), pp.
43
48
.
16.
Kaufman
,
L.
, and
Rousseeuw
,
P. J.
,
2009
,
Finding Groups in Data: An Introduction to Cluster Analysis
, Vol. 344,
John Wiley & Sons
,
Hoboken, NJ
.
17.
Aryal
,
S.
,
Ting
,
K.
,
Washio
,
T.
, and
Haffari
,
G.
,
2017
, “
Data-Dependent Dissimilarity Measure: An Alternative to Geometric Distance Measure
,”
Knowl. Inf. Syst.
,
53
(
2
), pp.
479
506
.
18.
Xu
,
R.
, and
Wunsch
,
D.
,
2005
, “
Survey of Clustering Algorithms
,”
IEEE Trans. Neural Netw.
,
16
(
3
), pp.
645
678
.
19.
Von Luxburg
,
U.
,
2007
, “
A Tutorial on Spectral Clustering
,”
Stat. Comput.
,
17
(
4
), pp.
395
416
.
20.
Shi
,
J.
, and
Malik
,
J.
,
2000
, “
Normalized Cuts and Image Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
8
), p.
888-905
.
21.
Ng
,
A. Y.
, and
Weiss
,
Y.
,
2002
, “
On Spectral Clustering: Analysis and An Algorithm
,”
Advances in Neural Information Processing Systems 14: Proceedings of the 2001 Conference
,
Vancouver, British Columbia, Canada
,
Dec. 3–8
, Vol. 2, MIT Press, p.
849
.
22.
Zelnik-Manor
,
L.
, and
Perona
,
P.
,
2004
, “
Self-Tuning Spectral Clustering
,”
Advances in Neural Information Processing Systems
,
Vancouver, British Columbia, Canada
,
Dec. 13–18
.
23.
Zhang
,
X.
,
Li
,
J.
, and
Yu
,
H.
,
2011
, “
Local Density Adaptive Similarity Measurement for Spectral Clustering
,”
Pattern Recogn. Lett.
,
32
(
2
), pp.
352
358
.
24.
Ester
,
M.
,
Kriegel
,
H.-P.
,
Sander
,
J.
, and
Xu
,
X.
,
1996
, “
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise
,”
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96
,
Portland, OR
,
Aug. 2–4
, AAAI Press, pp.
226
231
.
25.
Hinneburg
,
A.
, and
Keim
,
D. A.
,
2003
, “
A General Approach to Clustering in Large Databases With Noise
,”
Knowl. Inf. Syst.
,
5
(
4
), pp.
387
415
.
26.
Campello
,
R. J.
,
Moulavi
,
D.
, and
Sander
,
J.
,
2013
, “
Density-Based Clustering Based on Hierarchical Density Estimates
,”
Pacific-Asia Conference on Knowledge Discovery and Data Mining
,
Gold Coast, Australia
,
Apr. 14–17
, Springer, pp.
160
172
.
27.
Pfitzner
,
D.
,
Leibbrandt
,
R.
, and
Powers
,
D.
,
2009
, “
Characterization and Evaluation of Similarity Measures for Pairs of Clusterings
,”
Knowl. Inf. Syst.
,
19
(
3
), pp.
361
394
.
28.
Strehl
,
A.
, and
Ghosh
,
J.
,
2002
, “
Cluster Ensembles—A Knowledge Reuse Framework for Combining Multiple Partitions
,”
J. Mach. Learn. Res.
,
3
, pp.
583
617
.
29.
Rand
,
W. M.
,
1971
, “
Objective Criteria for the Evaluation of Clustering Methods
,”
J. Am. Stat. Assoc.
,
66
(
336
), pp.
846
850
.
30.
Hubert
,
L.
, and
Arabie
,
P.
,
1985
, “
Comparing Partitions
,”
J. Classif.
,
2
(
1
), pp.
193
218
.
You do not currently have access to this content.