Abstract

This paper demonstrates the feasibility of blowing and suction for flow control based on the computational fluid dynamics (CFD) simulations at a low Reynolds number flows. The effects of blowing and suction position, and the blowing and suction mass flowrate, and on the flow control are presented in this paper. The optimal conditions for suppressing the wake of the cylinder are investigated by examining the flow separation and the near wake region; analyzing the aerodynamic force (lift and drag) fluctuations using the fast Fourier transform (FFT) to separate the effects of small-scale turbulent structures in the wake region. A method for stochastic analysis using machine learning techniques is proposed. Three different novel machine learning methods were applied to CFD results to predict the variation in drag coefficient due to the vortex shedding. Although, the prediction power of all the methods utilized is in the acceptable accuracy range, the Gaussian process regression (GPR) method is more accurate with an R2(coefficient of determination) > 0.95. The results indicate that by optimizing the blowing and suction parameters like mass flowrate, slot location, and the slot configuration, up to 20% reduction can be achieved in the drag coefficient.

References

1.
Choi
,
H.
,
2008
, “
Control of Flow Over a Bluff Body
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
113
139
.
2.
Ramsay
,
J.
,
Sellier
,
M.
, and
Ho
,
W. H.
,
2020
, “
Non-Uniform Suction Control of Flow Around a Circular Cylinder
,”
Int. J. Heat Fluid Flow
,
82
, p.
108559
.
3.
Roshko
,
A.
,
1955
, “
On the Wake and Drag of Bluff Bodies
,”
J. Aeronaut. Sci.
,
22
(
2
), pp.
124
132
.
4.
Bloor
,
M. S.
,
1964
, “
The Transition to Turbulence in the Wake of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
19
(
290
), p.
304
.
5.
Cheng
,
M.
, and
Liu
,
G. R.
,
2000
, “
Effects of Afterbody Shape on Flow Around Prismatic Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
84
(
2
), pp.
181
196
.
6.
Brika
,
D.
, and
Laneville
,
A.
,
1993
, “
Vortex Induced Vibrations of Long Flexible Circular Cylinder
,”
J. Fluid Mech.
,
250
(
1
), pp.
481
508
.
7.
Mittal
,
S.
,
2001
, “
Control of Flow Past Bluff Bodies Using Rotating Control Cylinders
,”
J. Fluids Struct.
,
15
(
2
), pp.
291
326
.
8.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
,
1991
, “
Rotary Oscillatory Control of a Cylinder Wake
,”
J. Fluid Mech.
,
224
, pp.
77
90
.
9.
Ali
,
M. S. M.
,
Doolan
,
C. J.
, and
Wheatley
,
V.
,
2012
, “
Low Reynolds Number Flow Over a Square Cylinder With a Detached Flat Plate
,”
Int. J. Heat Fluid Flow
,
36
, pp.
133
141
.
10.
Muddada
,
S.
, and
Patnaik
,
B. S. V.
,
2010
, “
An Active Flow Control Strategy for the Suppression of Vortex Structures Behinda Circular Cylinder
,”
Eur. J. Mech. B Fluids
,
29
(
2
), pp.
93
104
.
11.
Park
,
D.
, and
Yang
,
K. S.
,
2017
, “
Effect of Rounding on Flow-Induced Forces on a Square Cylinder
,”
J. Mech. Sci. Technol.
,
31
(
12
), pp.
5857
5862
.
12.
Xu
,
F.
,
Chen
,
W. L.
,
Duan
,
Z. D.
, and
Ou
,
J. P.
,
2020
, “
Large-Eddy Simulation of Passive Jet Flow Control on the Wake of Flow Around a Circular Cylinder
,”
Comput. Fluids
,
196
, p.
104342
.
13.
Rastan
,
M. R.
,
Sohankar
,
A.
,
Doolan
,
C.
,
Moreau
,
D.
,
Shirani
,
E.
, and
Alam
,
M. M.
,
2019
, “
Controlled Flow Over a Finite Square Cylinder Using Suction and Blowing
,”
Int. J. Mech. Sci.
,
156
(
8
), pp.
410
434
.
14.
Zhu
,
H.
,
Zhao
,
H.
, and
Zhou
,
T.
,
2019
, “
Direct Numerical Simulation of Flow Over a Slotted Cylinder at Low Reynolds Number
,”
Appl. Ocean Res.
,
87
, pp.
9
25
.
15.
Feng
,
L. H.
,
Wang
,
J. J.
, and
Pan
,
C.
,
2010
, “
Effect of the Novel Synthetic Jet on Wake Vortex Shedding Modes of a Circular Cylinder
,”
J. Fluids Struct.
,
26
(
6
), pp.
900
917
.
16.
Feng
,
L. H.
, and
Wang
,
J. J.
,
2012
, “
Synthetic Jet Control of Separation in the Flow Over a Circular Cylinder
,”
Exp. Fluids
,
53
(
2
), pp.
467
480
.
17.
Feng
,
L. H.
, and
Wang
,
J. J.
,
2010
, “
Circular Cylinder Vortex-Synchronization Control With a Synthetic Jet Positioned at the Rear Stagnation Point
,”
J. Fluid Mech.
,
662
, pp.
232
259
.
18.
Feng
,
L. H.
,
Wang
,
J. J.
, and
Pan
,
C.
,
2011
, “
Proper Orthogonal Decomposition Analysis of Vortex Dynamics of a Circular Cylinder Under Synthetic Jet Control
,”
Phys. Fluids
,
23
(
1
), p.
014106
.
19.
Ji
,
C.
,
Yang
,
X.
,
Yu
,
Y.
,
Cui
,
Y.
, and
Srinil
,
N.
,
2020
, “
Numerical Simulation of Flows Around a Dual Step Cylinder With Different Diameter Ratios at Low Reynolds Number
,”
Eur. J. Mech. B Fluids
,
79
, pp.
332
344
.
20.
McClure
,
J.
,
Morton
,
C.
, and
Yarusevych
,
S.
,
2015
, “
Flow Development and Structural Loading on Dual Step Cylinders in Laminar Shedding Regime
,”
Phys. Fluids
,
27
(
6
), p.
063602
.
21.
Richmond
,
A.
,
Sobey
,
A.
,
Pandit
,
R.
, and
Kolios
,
A.
,
2020
, “
Stochastic Assessment of Aerodynamics Within Offshore Wind Farms Based on Machine-Learning
,”
Renew. Energy
,
161
, pp.
650
661
.
22.
Couhert
,
C.
,
Commandre
,
J. M.
, and
Salvador
,
S.
,
2009
, “
Is it Possible to Predict Gas Yields of Any Biomass After Rapid Pyrolysis at High Temperature From Its Composition in Cellulose, Hemicellulose and Lignin
,”
Fuel
,
88
(
3
), pp.
408
417
.
23.
Ayli
,
E.
,
2020
, “
Modeling of Mixed Convection in an Enclosure With Using Multiple Regression, ANN and ANFIS Models
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
15
), pp.
3078
3093
.
24.
Ayli
,
E.
,
2019
, “
Experimental Thermal Performance Analysis of Rectangular Fins Based on Artificial Neural Network Approach and Correlation
,”
Muğla J. Sci. Technol.
,
4
.
25.
Ho
,
T. K.
,
1995
, “
Random Decision Forests
,”
Proceedings of the 3rd International Conference on Document Analysis and Recognition
,
Montreal, QC, Canada
, pp.
278
282
.
26.
Zhou
,
H.
,
Qian
,
X. P.
,
Cen
,
K. F.
, and
Fan
,
J. R.
,
2004
, “
Optimizing Pulverized Coal Combustion Performance Based on ANN and GA
,”
Fuel Process Technol.
,
85
, pp.
113
124
.
27.
Xing
,
J.
,
Wank
,
H.
,
Luo
,
K.
,
Wang
,
S.
,
Bai
,
Y.
, and
Fan
,
J.
,
2019
, “
Predictive Single-Step Kinetic Model of Biomass Devolatilization for CFD Applications: A Comparison Study of Empirical Correlations (EC), Artificial Neural Networks (ANN) and Random Forest (RF)
,”
Renew. Energy
,
136
, pp.
104
114
.
28.
Kahani
,
M.
,
Ghazvini
,
M.
,
Gharyehsafa
,
B. M.
,
Ahmadi
,
M. H.
,
Pourfarhang
,
A.
,
Shokrgozar
,
M.
, and
Heris
,
S. Z.
,
2020
, “
Application of M5 Tree Regression, MARS, and Artificial Neural Network Methods to Predict the Nusselt Number and Output Temperature of CuO Based Nanofluid flows in a Car Radiator
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104667
29.
Hu
,
G.
, and
Kwok
,
K. C. S.
,
2020
, “
Predicting Wind Pressures Around Circular Cylinders Using Machine Learning Techniques
,”
J. Wind Eng. Ind. Aerodyn.
,
198
, p.
104099
.
30.
Wu
,
M.
,
Wen
,
C.
,
Yen
,
R.
,
Weng
,
M.
, and
Wang
,
B.
,
2004
, “
Experimental and Numerical Study of the Separation Angle for Flow Around a Cylinder at Low Reynolds Number
,”
J. Fluid Mech.
,
515
, pp.
233
260
.
31.
Soumya
,
S.
, and
Prakash
,
K. A.
,
2017
, “
Effect of Splitter Plate on Passive Control and Drag Reduction for Fluid Flow Past an Elliptic Cylinder
,”
Ocean Eng.
,
14
, pp.
351
374
.
32.
Zdravkovich
,
M.
,
1979
, “
A Critical Remark on the Use of Drag Coefficient аt Low Reynolds Numbers
,”
Zbornik Radova
,
3
(
11
), pp.
152
156
.
33.
Tritton
,
D. J.
,
1959
, “
Experiments on the Flow Past a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
6
(
4
), pp.
547
567
.
34.
Wieselsberger
,
C.
,
1922
, “
New Data on the Laws of Fluid Resistance
,”
Phys. Zeitschrift
,
22
, pp.
1
16
.
35.
McCulloch
,
W. S.
, and
Pıtts
,
W.
,
1948
, “
A Logical Calculus of the Ideas Immanent in Nervous Activity
,”
Bull. Math. Biol.
,
5
(
4
), pp.
115
133
.
36.
Ho
,
T. K.
,
1995
, “
Random Decision Forests
,”
Proceedings of 3rd International Conference on Document Analysis and Recognition
,
Montreal, QC, Canada
, pp.
278
282
.
37.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
38.
Hastie
,
T.
,
Tibshirani
,
R.
,
Friedman
,
J. H.
, and
Friedman
,
J. H.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer
,
New York
,
587
605
.
39.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316 l Stainless Steel
,”
Int. J. Manuf. Technol.
,
94
(
9–12
), pp.
3591
3603
.
40.
Wang
,
S.
,
Zhu
,
L.
,
Fuh
,
J. Y.
,
Zhang
,
H.
, and
Yan
,
W.
,
2020
, “
Multi-physics Modeling and Gaussian Process Regression Analysis of Cladding Track Geometry for Direct Energy Deposition
,”
Opt. Lasers Eng.
,
127
, p.
105950
.
41.
Bahrainian
,
S. S.
,
Bakhshesh
,
M.
,
Hajidavalloo
,
E.
, and
Parsi
,
M.
,
2021
, “
A Novel Approach for Solid Particle Erosion Prediction Based on Gaussian Process Regression
,”
Wear
,
446
, p.
203549
.
42.
Rasmussen
,
C
, and
Williams
,
C
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
, Cambridge, MA.
43.
Vapnik
,
V.
,
1995
,
The Nature of Statistical Learning Theory
,
Springer
,
Berlin
, pp.
120
140
.
44.
He
,
J. W.
,
Glowinski
,
R.
,
Metcalfe
,
R.
,
Nordlander
,
A.
, and
Periaux
,
J.
,
2000
, “
Active Control and Drag Optimization for Flow Past a Circular Cylinder I: Oscillatory Cylinder Rotation
,”
J. Comput. Phys.
,
163
(
1
), pp.
83
117
.
45.
Lu
,
L.
,
Liu
,
M. M.
,
Teng
,
B.
,
Cui
,
Z. D.
,
Tang
,
G. Q.
,
Zhao
,
M.
, and
Cheng
,
L.
,
2014
, “
Numerical Investigation of Fluid Flow Past Circular Cylinder With Multiple Control Rods at Low Reynolds Number
,”
J. Fluids Struct.
,
48
, pp.
235
259
.
46.
Fransson
,
J. H. M.
,
Konieczny
,
P.
, and
Alfredsson
,
P. H.
,
2004
, “
Flow Around a Porous Cylinder Subject to Continuous Suction or Blowing
,”
J. Fluids Struct.
,
19
(
8
), pp.
1031
1048
.
47.
Apacoglu
,
B.
,
Paksoy
,
A.
, and
Aradag
,
S.
,
2011
, “
CFD Analysis and Reduced Order Modeling of Uncontrolled and Controlled Laminar Flow Over a Circular Cylinder
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
1
), pp.
67
82
.
48.
Mathelin
,
L.
,
Bataille
,
F.
, and
Lallemand
,
A.
,
2002
, “
The Effect of Uniform Blowing on the Flow Past a Circular Cylinder
,”
J. Fluid. Eng.
,
124
(
2
), pp.
452
464
.
49.
Norberg
,
C.
,
1987
,
Effects of Reynolds Number and a Low Intensity Free Stream Turbulence on the Flow Around a Circular Cylinder
,
Department of Applied Thermodynamics and Fluid Mechanics, Chalmers University of Technology
,
Sweden
.
You do not currently have access to this content.