Abstract

This article studies fine motor strategies for precise spatial manipulation in close-to-body interactions. Our innate ability for precise work is the result of the confluence of visuo-tactile perception, proprioception, and bi-manual motor control. Contrary to this, most mixed-reality (MR) systems are designed for interactions at arms length. To develop guidelines for precise manipulations in MR systems, there is a need for a systematic study of motor strategies including physical indexing, bi-manual coordination, and the relationship between visual and tactile feedback. To address this need, we present a series of experiments using three variations of a tablet-based MR interface using a close-range motion capture system and motion-tracked shape proxies. We investigate an elaborate version of the classic peg-and-hole task that our results strongly suggests the critical need for high precision tracking to enable precise manipulation.

References

1.
Milgram
,
P.
, and
Kishino
,
F.
,
1994
, “
A Taxonomy of Mixed Reality Visual Displays
,”
IEICE Trans. Inf. Syst.
,
77
(
12
), pp.
1321
1329
.
2.
Milgram
,
P.
, and
Colquhoun
,
H.
,
1999
, “
A Taxonomy of Real and Virtual World Display Integration
,”
Mixed Reality: Merging Real Virtual Worlds
,
1
(
1999
), pp.
1
26
.
3.
Billinghurst
,
M.
,
2020
, “
Rapid Prototyping for AR/VR Experiences
,”
Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, CHI EA ’20
,
Honolulu, HI
,
Apr. 25–30
, Association for Computing Machinery, pp.
1
4
.
4.
Rokhsaritalemi
,
S.
,
Sadeghi-Niaraki
,
A.
, and
Choi
,
S.-M.
,
2020
, “
A Review on Mixed Reality: Current Trends, Challenges and Prospects
,”
Appl. Sci.
,
10
(
2
), p.
636
.
5.
Çltekin
,
A.
,
Lochhead
,
I.
,
Madden
,
M.
,
Christophe
,
S.
,
Devaux
,
A.
,
Pettit
,
C.
,
Lock
,
O.
,
Shukla
,
S.
,
Herman
,
L.
,
Stachoň
,
Z.
,
Kubíček
,
P.
,
Snopková
,
D.
,
Bernardes
,
S.
, and
Hedley
,
N.
,
2020
, “
Extended Reality in Spatial Sciences: A Review of Research Challenges and Future Directions
,”
ISPRS Int. J. Geo-Inf.
,
9
(
7
), p.
439
.
6.
Speicher
,
M.
,
Hall
,
B. D.
, and
Nebeling
,
M.
,
2019
, “
What is Mixed Reality?
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
,
Glasgow, UK
,
May 4–9
, Association for Computing Machinery, pp.
1
15
.
7.
Abidi
,
M. H.
,
Ahmad
,
A.
,
Darmoul
,
S.
, and
Al-Ahmari
,
A. M.
,
2015
, “
Haptics Assisted Virtual Assembly
,”
IFAC-PapersOnLine
,
48
(
3
), pp.
100
105
.
8.
Abidi
,
M. H.
,
Al-Ahmari
,
A.
,
Ahmad
,
A.
,
Ameen
,
W.
, and
Alkhalefah
,
H.
,
2019
, “
Assessment of Virtual Reality-Based Manufacturing Assembly Training System
,”
Int. J. Adv. Manuf. Technol.
,
105
(
9
), pp.
3743
3759
.
9.
Das
,
A. N.
, and
Popa
,
D. O.
,
2011
, “
Precision Evaluation of Mmodular Multiscale Robots for Peg-In-Hole Microassembly Tasks
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1699
1704
.
10.
Park
,
H.
,
Bae
,
J.-H.
,
Park
,
J.-H.
,
Baeg
,
M.-H.
, and
Park
,
J.
,
2013
, “
Intuitive Peg-In-Hole Assembly Strategy With a Compliant Manipulator
,”
44th International Symposium on Robotics (ISR)
,
Kintex, Seoul, South Korea
,
Oct. 24–26
, pp.
1
5
.
11.
Marvel
,
J. A.
,
Bostelman
,
R.
, and
Falco
,
J.
,
2018
, “
Multi-Robot Assembly Strategies and Metrics
,”
International Conference on Intelligent Robots and Systems
,
Vancouver, British Columbia, Canada
,
Sept. 24–28
.
12.
Li
,
X.
,
Li
,
R.
,
Qiao
,
H.
,
Ma
,
C.
, and
Li
,
L.
,
2017
, “
Human-Inspired Compliant Strategy for Peg-in-Hole Assembly Using Environmental Constraint and Coarse Force Information
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
4743
4748
.
13.
Bowman
,
D. A.
,
Kruijff
,
E.
,
LaViola
,
J. J.
, and
Poupyrev
,
I.
,
2004
,
3D User Interfaces: Theory and Practice
,
Addison Wesley Longman Publishing Co., Inc.
,
Redwood City, CA
.
14.
Argelaguet
,
F.
, and
Andujar
,
C.
,
2013
, “
A Survey of 3D Object Selection Techniques for Virtual Environments
,”
Comput. Graph.
,
37
(
3
), pp.
121
136
.
15.
Fekri
,
A. M. Y.
, and
Wanis
,
I. A.
,
2019
, “
A Review on Multimodal Interaction in Mixed Reality Environment
,”
IO Conference Series: Materials Science and Engineering
,
Bangkok, Thailand
,
Feb. 4–9
, Vol. 551, p.
012049
.
16.
Klemmer
,
S. R.
,
Hartmann
,
B.
, and
Takayama
,
L.
,
2006
, “
How Bodies Matter: Five Themes for Interaction Design
,”
ACM Conference on Designing Interactive Systems (DIS ’06)
,
Brisbane, Australia
,
June 4–8
, pp.
140
149
.
17.
Dourish
,
P.
,
2001
,
Where the Action is: The Foundations of Embodied Interaction
,
The MIT Press
,
Camdridge, MA
.
18.
Hall
,
E. T.
,
1966
,
The Hidden Dimension
, Vol.
609
,
NY: Doubleday
,
Garden City
.
19.
Wang
,
R.
,
Paris
,
S.
, and
Popović
,
J.
,
2011
, “
6D Hands: Markerless Hand-Tracking for Computer Aided Design
,”
24th ACM Symposium on User Interface Software and Technology (UIST)
,
Santa Barbara, CA
,
Oct. 16–19
, pp.
549
558
.
20.
Song
,
P.
,
Goh
,
W. B.
,
Hutama
,
W.
,
Fu
,
C.-W.
, and
Liu
,
X.
,
2012
, “
A Handle Bar Metaphor for Virtual Object Manipulation With Mid-Air Interaction
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12
,
Austin, TX
,
May 5–10
, ACM, pp.
1297
1306
.
21.
Vinayak
,
Murugappan
, and
Ramani
,
K.
,
2013
, “
Handy-Potter: Rapid Exploration of Rotationally Symmetric Shapes Through Natural Hand Motions
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021008
.
22.
Guenter
,
B.
,
Finch
,
M.
,
Drucker
,
S.
,
Tan
,
D.
, and
Snyder
,
J.
,
2012
, “
Foveated 3D Graphics
,”
SIGGRAPH Asia 2012 Computer Animation Festival, SA '12
,
Singapore
,
Nov. 29–Dec. 1
.
23.
Azuma
,
R. T.
,
2017
, “
Making Augmented Reality a Reality
,”
Image and Metrology 2017
,
San Francisco, CA
,
June 26–29
.
24.
Laitin
,
E. L.
,
Tymoski
,
M. J.
,
Tenhundfeld
,
N. L.
, and
Witt
,
J. K.
,
2019
, “
The Uphill Battle for Action-Specific Perception
,”
Atten., Percept., Psychophys.
,
81
(
3
), pp.
778
793
.
25.
Witt
,
J. K.
,
2020
, “
Action’s Influence on Spatial Perception: Resolution and a Mystery
,”
Curr. Opin. Psychol.
,
32
, pp.
153
157
.
26.
Armbruster
,
C.
, and
Spijkers
,
W.
,
2006
, “
Movement Planning in Prehension: Do Intended Actions Influence the Initial Reach and Grasp Movement?
,”
Motor Control
,
10
(
4
), p.
311
.
27.
Hilliges
,
O.
,
Kim
,
D.
,
Izadi
,
S.
,
Weiss
,
M.
, and
Wilson
,
A.
,
2012
, “
Holodesk: Direct 3D Interactions With a Situated See-Through Display
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12
,
Austin, TX
,
May 5–10
, ACM, pp.
2421
2430
.
28.
Lee
,
J.
,
Olwal
,
A.
,
Ishii
,
H.
, and
Boulanger
,
C.
,
2013
, “
Spacetop: Integrating 2D and Spatial 3D Interactions in a See-Through Desktop Environment
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13
,
Paris France
,
Apr. 27–May 2
, ACM, pp.
189
192
.
29.
Weichel
,
C.
,
Lau
,
M.
,
Kim
,
D.
,
Villar
,
N.
, and
Gellersen
,
H. W.
,
2014
, “
Mixfab: A Mixed-Reality Environment for Personal Fabrication
,”
Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, CHI ’14
,
Toronto, Ontario, Canada
,
Apr. 26–May 1
, ACM, pp.
3855
3864
.
30.
Gibson
,
J. J.
,
2014
,
The Ecological Approach to Visual Perception: Classic Edition
,
Psychology Press
,
UK
.
31.
Malmberg
,
F.
,
Vidholm
,
E.
, and
Nyström
,
I.
,
2006
, “A 3D Live-Wire Segmentation Method for Volume Images Using Haptic Interaction,”
Discrete Geometry for Computer Imagery
,
A.
Kuba
,
L. G.
Nyúl
, and
K.
Palágyi
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
663
673
.
32.
Petersen
,
N.
, and
Stricker
,
D.
,
2009
, “
Continuous Natural User Interface: Reducing the Gap Between Real and Digital World
,”
2009 8th IEEE International Symposium on Mixed and Augmented Reality
,
Orlando, FL
,
Oct. 19–20
, pp.
23
26
.
33.
Regazzoni
,
D.
,
Rizzi
,
C.
, and
Vitali
,
A.
,
2018
, “
Virtual Reality Applications: Guidelines to Design Natural User Interface
,”
Volume 1B: 38th Computers and Information in Engineering Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, QC, Canada
,
Aug. 26–29
, Paper No. V01BT02A029.
34.
Masliah
,
M. R.
, and
Milgram
,
P.
,
2000
, “
Measuring the Allocation of Control in a 6 deg-of-Freedom Docking Experiment
,”
Proceedings of the Annual ACM Conference on Human Factors in Computing Systems, CHI ’00
,
The Hague, The Netherlands
,
Apr. 1–6
, ACM, pp.
25
32
.
35.
Freeman
,
E.
,
Brewster
,
S.
, and
Lantz
,
V.
,
2016
, “
Do That, There
,”
Proceedings of the Annual ACM Conference on Human Factors in Computing Systems, CHI ’16
,
San Jose, CA
,
May 7–12
, ACM Press, pp.
2319
2331
.
36.
Mumm
,
J.
, and
Mutlu
,
B.
,
2011
, “
Human-Robot Proxemics
,”
6th Annual Conference for Basic and Applied Human–Robot Interaction Research, HRI '11
,
Lausanne, Switzerland
,
Mar. 6–9
, ACM Press, p.
331
.
37.
Kokubo
,
Y.
,
Sato-Shimokawara
,
E.
, and
Yamaguchi
,
T.
,
2016
, “
Relationship Between Personal Space and the Big Five With Telepresence Robot
,”
9th International Conference on Intelligent Robotics and Applications, ICIRA '16
,
Tokyo, Japan
,
Aug. 22–24
.
38.
Dickinson
,
P.
,
Gerling
,
K.
,
Hicks
,
K.
,
Murray
,
J.
,
Shearer
,
J.
, and
Greenwood
,
J.
,
2019
, “
Virtual Reality Crowd Simulation: Effects of Agent Density on User Experience and Behaviour
,”
Virtual Reality
,
23
(
1
), pp.
19
32
.
39.
Zhang
,
J.
,
Janeh
,
O.
,
Katzakis
,
N.
,
Krupke
,
D.
, and
Steinicke
,
F.
,
2019
, “
Evaluation of Proxemics in Dynamic Interaction With a Mixed Reality Avatar Robot
,”
Proceedings of the International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments (ICAT-EGVE) 2019
,
Tokyo, Japan
,
Oct. 20–23
, pp.
1
8
.
40.
Grønbæk
,
J. E.
,
Knudsen
,
M. S.
,
O’Hara
,
K.
,
Krogh
,
P. G.
,
Vermeulen
,
J.
, and
Petersen
,
M. G.
,
2020
, “
Proxemics Beyond Proximity: Designing for Flexible Social Interaction Through Cross-Device Interaction
,”
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI '20
,
Honolulu, HI
,
Apr. 25–30
, Association for Computing Machinery, pp.
1
14
.
41.
Pederson
,
T.
,
Janlert
,
L.-E.
,
Jalaliniya
,
S.
, and
Surie
,
D.
, “
Proximity as Key Property in the Egocentric Interaction Paradigm
.”
42.
Greenberg
,
S.
,
Marquardt
,
N.
,
Ballendat
,
T.
,
Diaz-Marino
,
R.
, and
Wang
,
M.
,
2011
, “
Proxemic Interactions: The New Ubicomp?
,”
Interactions
,
18
(
1
), pp.
42
50
.
43.
Ballendat
,
T.
,
Marquardt
,
N.
, and
Greenberg
,
S.
,
2010
, “
Proxemic Interaction
,”
ACM International Conference on Interactive Tabletops and Surfaces – ITS ’10
,
Saarbrucken, Germany
,
Nov. 7–10
, ACM Press, p.
121
.
44.
Marquardt
,
N.
,
Diaz-Marino
,
R.
,
Boring
,
S.
, and
Greenberg
,
S.
,
2011
, “
The Proximity Toolkit
,”
Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology - UIST ’11
,
Santa Barbara, CA
,
Oct. 16–19
, ACM Press, p.
315
.
45.
Marquardt
,
N
, and
Nicolai
,
2013
, “
Proxemic Interactions With and Around Digital Surfaces
,”
ACM Interactive Tabletops and Surfaces 2013 Conference (ITS)
,
Dresden, Germany
,
Oct. 6–9
, ACM Press, pp.
493
494
.
46.
Paul
,
C. L.
, and
Bradel
,
L.
,
2018
, “
Size Matters
,”
Proceedings of the 2018 International Conference on Advanced Visual Interfaces, AVI '18
,
New York, NY
,
May 29–June 1
, ACM Press, pp.
1
5
.
47.
Li
,
A. X.
,
Lou
,
X.
,
Hansen
,
P.
, and
Peng
,
R.
,
2016
, “
Improving the User Engagement in Large Display Using Distance-Driven Adaptive Interface
,”
Interact. Comput.
,
28
(
4
), pp.
462
478
.
48.
Jakobsen
,
M. R.
, and
HornbÆk
,
K.
,
2014
, “
Up Close and Personal
,”
ACM Trans. Comput.-Hum. Interact.
,
21
(
2
), pp.
1
34
.
49.
Ledo
,
D.
,
Greenberg
,
S.
,
Marquardt
,
N.
, and
Boring
,
S.
,
2015
, “
Proxemic-Aware Controls
,”
Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, MHCI '15
,
New York, NY
,
Aug. 24–27
, ACM Press, pp.
187
198
.
50.
Babic
,
T.
,
Reiterer
,
H.
, and
Haller
,
M.
,
2018
, “
Pocket6: A 6DOF Controller Based on a Simple Smartphone Application
,”
6th ACM Symposium on Spatial User Interaction (SUI 2018)
,
Berlin, Germany
,
Oct. 13–14
, Association for Computing Machinery, pp.
2
10
.
51.
Huo
,
K.
,
Cao
,
Y.
,
Yoon
,
S. H.
,
Xu
,
Z.
,
Chen
,
G.
, and
Ramani
,
K.
,
2018
, “
Scenariot: Spatially Mapping Smart Things Within Augmented Reality Scenes
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI '18
,
Montreal, QC, Canada
,
Apr. 21–26
, Association for Computing Machinery, pp.
1
13
.
52.
Fogtmann
,
M. H.
,
Fritsch
,
J.
, and
Kortbek
,
K. J.
,
2008
, “
Kinesthetic Interaction: Revealing the Bodily Potential in Interaction Design
,”
Proceedings of the 20th Australasian Conference on Computer-Human Interaction: Designing for Habitus and Habitat, OZCHI '08
,
Cairns, Australia
,
Dec. 8–12
, ACM, pp.
89
96
.
53.
Makin
,
L.
,
Barnaby
,
G.
, and
Roudaut
,
A.
,
2019
, “
Tactile and Kinesthetic Feedbacks Improve Distance Perception in Virtual Reality
,”
Proceedings of the 31st Conference on l'Interaction Homme-Machine: Adjunct, IHM '19
,
Grenoble, France
,
Dec. 10–13
.
54.
Cockburn
,
A.
,
Quinn
,
P.
,
Gutwin
,
C.
,
Ramos
,
G.
, and
Looser
,
J.
,
2011
, “
Air Pointing: Design and Evaluation of Spatial Target Acquisition With and Without Visual Feedback
,”
Int. J. Hum.-Comput. Stud.
,
69
(
6
), pp.
401
414
.
55.
Yan
,
Y.
,
Yu
,
C.
,
Ma
,
X.
,
Huang
,
S.
,
Iqbal
,
H.
, and
Shi
,
Y.
,
2018
, “
Eyes-Free Target Acquisition in Interaction Space Around the Body for Virtual Reality
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing System, CHI '18
,
Montreal, QC, Canada
,
Apr. 21–26
, ACM, pp. 42:1–42:13.
56.
Plaumann
,
K.
,
Weing
,
M.
,
Winkler
,
C.
,
Müller
,
M.
, and
Rukzio
,
E.
,
2018
, “
Towards Accurate Cursorless Pointing: The Effects of Ocular Dominance and Handedness
,”
Pers. Ubiquitous Comput.
,
22
(
4
), pp.
633
646
.
57.
De Boeck
,
J.
,
Raymaekers
,
C.
, and
Coninx
,
K.
,
2006
, “
Exploiting Proprioception to Improve Haptic Interaction in a Virtual Environment
,”
Presence: Teleoper. Virtual Environ.
,
15
(
6
), pp.
627
636
.
58.
Gao
,
B.
,
Lu
,
Y.
,
Kim
,
H.
,
Kim
,
B.
, and
Long
,
J.
,
2019
,
Virtual, Augmented and Mixed Reality. Multimodal Interaction
,
J. Y.
Chen
, and
G.
Fragomeni
, eds.,
Springer International Publishing
,
Switzerland
, pp.
44
58
.
59.
Hinckley
,
K.
,
Pausch
,
R.
,
Proffitt
,
D.
,
Patten
,
J.
, and
Kassell
,
N.
,
1997
, “
Cooperative Bimanual Action
,”
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI '97
,
Atlanta, GA
,
Mar. 22–27
, ACM, pp.
27
34
.
60.
Leganchuk
,
A.
,
Zhai
,
S.
, and
Buxton
,
W.
,
1998
, “
Manual and Cognitive Benefits of Two-Handed Input: An Experimental Study
,”
ACM Trans. Comput.-Hum. Interact.
,
5
(
4
), pp.
326
359
.
61.
Schmidt
,
B.
,
2002
,
When are Two Hands Better Than one? : A Study of Bimanual Interaction
,
Computer Science and Software Engineering
.
62.
Sakurada
,
T.
,
Ito
,
K.
, and
Gomi
,
H.
,
2016
, “
Bimanual Motor Coordination Controlled by Cooperative Interactions in Intrinsic and Extrinsic Coordinates
,”
Eur. J. Neurosci.
,
43
(
1
), pp.
120
130
.
63.
Gribnau
,
M. W.
, and
Hennessey
,
J. M.
,
1998
, “
Comparing Single- and Two-Handed 3D Input for a 3D Object Assembly Task
,”
CHI 98 Conference Summary on Human Factors in Computing Systems
,
Los Angeles, CA
,
Apr. 18–23
, ACM,pp. 233–234.
64.
Buxton
,
W.
, and
Myers
,
B.
,
1986
, “
A Study in Two-Handed Input
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '86
,
Boston, MA
,
Apr. 13 –17
ACM, pp.
321
326
.
65.
Swinnen
,
S.
,
Young
,
D.
,
Walter
,
C.
, and
Serrien
,
D.
,
1991
, “
Control of Asymmetrical Bimanual Movements
,”
Exp. Brain Res.
,
85
(
1
), pp.
163
173
.
66.
Hinckley
,
K.
,
Pausch
,
R.
,
Proffitt
,
D.
, and
Kassell
,
N. F.
,
1998
, “
Two-Handed Virtual Manipulation
,”
ACM Trans. Comput.-Hum. Interact.
,
5
(
3
), pp.
260
302
.
67.
Balakrishnan
,
R.
, and
Kurtenbach
,
G.
,
1999
, “
Exploring Bimanual Camera Control and Object Manipulation in 3D Graphics Interfaces
,”
Proceedings of the ACM CHI 99 Human Factors in Computing Systems Conference, CHI '99
,
Pittsburg, PA
,
May 15–20
, ACM, pp.
56
62
.
68.
Balakrishnan
,
R.
, and
Hinckley
,
K.
,
2000
, “
Symmetric Bimanual Interaction
,”
Proceedings of the SIGCHI conference on Human Factors in Computing Systems, CHI '00
,
The Hague, The Netherlands
,
Apr. 1–6
, ACM, pp.
33
40
.
69.
Xia
,
X.
,
Irani
,
P.
, and
Wang
,
J.
,
2007
, “
Evaluation of Guiard’s Theory of Bimanual Control for Navigation and Selection
,”
Ergonomics and Health Aspects of Work with Computers, EHAWC '07
,
Beijing, China
,
July 22–27
, Springer-Verlag, pp.
368
377
.
70.
Song
,
J.
,
Cho
,
S.
,
Baek
,
S.-Y.
,
Lee
,
K.
, and
Bang
,
H.
,
2014
, “
Gafinc: Gaze and Finger Control Interface for 3D Model Manipulation in {CAD} Application
,”
Computer-Aided Design
,
46
, pp.
239
245
.
71.
Ulinski
,
A.
,
Wartell
,
Z.
, and
Hodges
,
L. F.
,
2007
, “
Bimanual Task Division Preferences for Volume Selection
,”
Proceedings of the 2007 ACM Symposium on Virtual reality Software and Technology, VRST '07
,
Newport Beach, CA
,
Nov. 5–7
, ACM, pp.
217
218
.
72.
Surale
,
H. B.
,
Gupta
,
A.
,
Hancock
,
M.
, and
Vogel
,
D.
,
2019
, “
Tabletinvr: Exploring the Design Space for Using a Multi-Touch Tablet in Virtual Reality
,”
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI '19
,
Glasgow, Scotland, UK
,
May 4–9
, pp.
1
13
.
73.
Montano-Murillo
,
R. A.
,
Nguyen
,
C.
,
Kazi
,
R. H.
,
Subramanian
,
S.
,
DiVerdi
,
S.
, and
Martinez-Plasencia
,
D.
,
2020
, “
Slicing-Volume: Hybrid 3D/2D Multi-Target Selection Technique for Dense Virtual Environments
,”
IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR)
,
Atlanta, GA
,
Mar. 22–26
, pp.
53
62
.
74.
Brandl
,
P.
,
Forlines
,
C.
,
Wigdor
,
D.
,
Haller
,
M.
, and
Shen
,
C.
,
2008
, “
Combining and Measuring the Benefits of Bimanual Pen and Direct-Touch Interaction on Horizontal Interfaces
,”
Proceedings of the Working Conference on Advanced Visual Interfaces, AVI '08
,
Napoli, Italy
,
May 28–30
, ACM, pp.
154
161
.
75.
Serino
,
A.
,
Noel
,
J.-P.
,
Galli
,
G.
,
Canzoneri
,
E.
,
Marmaroli
,
P.
,
Lissek
,
H.
, and
Blanke
,
O.
,
2015
, “
Body Part-Centered and Full Body-Centered Peripersonal Space Representations
,”
Sci. Rep.
,
5
, p.
18603
.
76.
di Pellegrino
,
G.
, and
Làdavas
,
E.
,
2015
, “
Peripersonal Space in the Brain
,”
Neuropsychologia
,
66
, pp.
126
133
.
77.
Galigani
,
M.
,
Castellani
,
N.
,
Donno
,
B.
,
Franza
,
M.
,
Zuber
,
C.
,
Allet
,
L.
,
Garbarini
,
F.
, and
Bassolino
,
M.
,
2020
, “
Effect of Tool-Use Observation on Metric Body Representation and Peripersonal Space
,”
Neuropsychologia
,
148
, p.
107622
.
78.
Marieb
,
E. N.
, and
Hoehn
,
K.
,
2007
,
Human Anatomy & Physiology
,
Pearson Education
,
London, UK.
.
79.
Bufacchi
,
R. J.
, and
Iannetti
,
G. D.
,
2018
, “
An Action Field Theory of Peripersonal Space
,”
Trends Cogn. Sci.
,
22
(
12
), pp.
1076
1090
.
80.
Popovici
,
I.
,
Schipor
,
O.-A.
, and
Vatavu
,
R.-D.
,
2019
, “
Hover: Exploring Cognitive Maps and Mid-Air Pointing for Television Control
,”
Int. J. Hum.-Comput. Stud.
,
129
, pp.
95
107
.
81.
Hans
,
A.
, and
Hans
,
E.
,
2015
, “
Kinesics, Haptics and Proxemics: Aspects of Non-Verbal Communication
,”
IOSR J. Humanit. Soc. Sci. (IOSR-JHSS)
,
20
(
2
), pp.
47
52
.
82.
Klatzky
,
R. L.
,
1998
,
Allocentric and Egocentric Spatial Representations: Definitions, Distinctions, and Interconnections
,
Springer
,
Berlin, Heidelberg
, pp.
1
17
.
83.
Bach
,
B.
,
Sicat
,
R.
,
Beyer
,
J.
,
Cordeil
,
M.
, and
Pfister
,
H.
,
2018
, “
The Hologram in My Hand: How Effective Is Interactive Exploration of 3d Visualizations in Immersive Tangible Augmented Reality?
IEEE Trans. Vis. Comput. Graph.
,
24
(
1
), pp.
457
467
.
84.
Feng
,
Q.
,
Shum
,
H. P. H.
, and
Morishima
,
S.
,
2018
, “
Resolving Occlusion for 3D Object Manipulation With Hands in Mixed Reality
,”
roceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, VRST '18
,
Tokyo, Japan
,
Nov. 28 –Dec. 1
, ACM, pp. 119:1–119:2.
85.
Hannaford
,
B.
,
Wood
,
L.
,
McAffee
,
D.
, and
Zak
,
H.
,
1991
, “
Performance Evaluation of a Six-Axis Generalized Force-Reflecting Teleoperator
,”
IEEE Trans. Syst., Man, and Cybern.
,
21
(
3
), pp.
620
633
.
86.
Unger
,
B.
,
Nicolaidis
,
A.
,
Berkelman
,
P.
,
Thompson
,
A.
,
Klatzky
,
R.
, and
Hollis
,
R.
,
2001
, “
Comparison of 3-D Haptic Peg-in-Hole Tasks in Real and Virtual Environments
,”
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Maui, HI
,
Oct. 29–Nov. 3
, vol. 3, pp.
1751
1756
.
87.
Unger
,
B.
,
Nicolaidis
,
A.
,
Berkelman
,
P.
,
Thompson
,
A.
,
Lederman
,
S.
,
Klatzky
,
R.
, and
Hollis
,
R.
,
2002
, “
Virtual Peg-in-Hole Performance Using a 6-DOF Magnetic Levitation Haptic Device: Comparison With Real Forces and With Visual Guidance Alone
,”
10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2002
,
Orlando, FL
,
Mar. 24–25
, pp.
263
270
.
88.
Speicher
,
M.
,
Daiber
,
F.
,
Kiefer
,
G.-L.
, and
Krüger
,
A.
,
2017
, “
Exploring Task Performance and User’s Preference of Mid-Air Hand Interaction in a 3D Docking Task Experiment
,”
5th ACM Symposium on Spatial User Interaction (SUI 2017)
,
Brighton, UK
,
Oct. 16–17
, p.
160
.
89.
Besançon
,
L.
,
Issartel
,
P.
,
Ammi
,
M.
, and
Isenberg
,
T.
,
2017
, “
Mouse, Tactile, and Tangible Input for 3D Manipulation
,”
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI '17
,
Denver, CO
,
May 6–11
, pp.
4727
4740
.
90.
Hart
,
S. G.
, and
Staveland
,
L. E.
,
1988
, “
Development of NASA-tlx (Task Load Index): Results of Empirical and Theoretical Research
,”
Adv. Psychol.
,
52
, pp.
139
183
.
91.
Chmarra
,
M. K.
,
Jansen
,
F. W.
,
Grimbergen
,
C. A.
, and
Dankelman
,
J.
,
2008
, “
Retracting and Seeking Movements During Laparoscopic Goal-oriented Movements. Is the Shortest Path Length Optimal?
,”
Surg. Endosc.
,
22
(
4
), pp.
943
949
.
92.
Williams
,
M. R.
, and
Kirsch
,
R. F.
,
2008
, “
Evaluation of Head Orientation and Neck Muscle Emg Signals as Command Inputs to a Human–Computer Interface for Individuals With High Tetraplegia
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
16
(
5
), pp.
485
496
.
93.
Wang
,
Z.
, and
Fey
,
A. M.
,
2018
, “
Human-Centric Predictive Model of Task Difficulty for Human-in-the-Loop Control Tasks
,”
PLoS. One.
,
13
(
4
), p.
e0195053
.
94.
Lavielle
,
M.
,
2005
, “
Using Penalized Contrasts for the Change-Point Problem
,”
Signal Process.
,
85
(
8
), pp.
1501
1510
.
95.
Killick
,
R.
,
Fearnhead
,
P.
, and
Eckley
,
I. A.
,
2012
, “
Optimal Detection of Changepoints With a Linear Computational Cost
,”
J. Am. Stat. Assoc.
,
107
(
500
), pp.
1590
1598
.
96.
Feix
,
T.
,
Romero
,
J.
,
Schmiedmayer
,
H.
,
Dollar
,
A. M.
, and
Kragic
,
D.
,
2016
, “
The Grasp Taxonomy of Human Grasp Types
,”
IEEE Trans. Human-Mach. Syst.
,
46
(
1
), pp.
66
77
.
97.
Kroemer
,
K. H. E.
,
1986
, “
Coupling the Hand With the Handle: An Improved Notation of Touch, Grip, and Grasp
,”
Human Fact.: J. Hum. Fact. Ergon. Soc.
,
28
(
3
), pp.
337
339
.
98.
Hart
,
S. G.
,
2006
, “
Nasa-Task Load Index (nasa-tlx); 20 Years Later
,”
Human Factors and Ergonomics Society 46th Annual Meeting
,
Baltimore, MD
,
Sept. 29–Oct. 4
.
99.
Algazi
,
V.
,
Avendaño
,
C.
, and
Duda
,
R.
,
2002
, “
Estimation of a Spherical-Head Model From Anthropometry
,”
AES: J. Audio Eng. Soc.
,
49
(
6
), p.
0
.
100.
Witt
,
J. K.
, and
Proffitt
,
D. R.
,
2008
, “
Action-Specific Influences on Distance Perception: a Role for Motor Simulation.
,”
J. Exp. Psychol.: Hum. Percept. Perform.
,
34
(
6
), p.
1479
.
101.
Witt
,
J. K.
,
Proffitt
,
D. R.
, and
Epstein
,
W.
,
2005
, “
Tool Use Affects Perceived Distance, But Only When You Intend to Use It
,”
J. Exp. Psychol.: Hum. Percept. Perform.
,
31
(
5
), p.
880
.
102.
Di Luca
,
M.
, and
Mahnan
,
A.
,
2019
, “
Perceptual Limits of Visual-Haptic Simultaneity in Virtual Reality Interactions
,”
2019 IEEE World Haptics Conference (WHC)
,
Tokyo, Japan
,
July 9–12
, pp.
67
72
.
103.
Schwarz
,
R. J.
, and
Taylor
,
C.
,
1955
, “
The Anatomy and Mechanics of the Human Hand
,”
Artif. Limbs
,
2
(
2
), pp.
22
35
.
104.
Ma’touq
,
J.
,
Hu
,
T.
, and
Haddadin
,
S.
,
2018
, “
Sub-millimetre Accurate Human Hand Kinematics: From Surface to Skeleton
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
2
), pp.
113
128
.
You do not currently have access to this content.