Abstract

Most multi-fidelity schemes for optimization or reliability assessment rely on regression surrogates, such as Gaussian processes. Contrary to these approaches, we propose a classification-based multi-fidelity scheme for reliability assessment. This technique leverages multi-fidelity information to locally construct failure boundaries using support vector machine (SVM) classifiers. SVMs are subsequently used to estimate the probability of failure using Monte Carlo simulations. The use of classification has several advantages: It can handle discontinuous responses and reduce the number of function evaluations in the case of a large number of failure modes. In addition, in the context of multi-fidelity techniques, classification enables the identification of regions where the predictions (e.g., failure or safe) from the various fidelities are identical. At the core of the proposed scheme is an adaptive sampling routine driven by the probability of classification inconsistency between the models. This sampling routine explores sparsely sampled regions of inconsistency between the models of various fidelity to iteratively refine the approximation of the failure domain boundaries. A lookahead scheme, which looks one step into the future without any model evaluations, is used to selectively filter adaptive samples that do not induce substantial changes in the failure domain boundary approximation. The model management strategy is based on a framework that adaptively identifies a neighborhood of no confidence between the models. The proposed scheme is tested on analytical examples of dimensions ranging from 2 to 10, and finally applied to assess the reliability of a miniature shell and tube heat exchanger.

References

1.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
2.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
3.
Shi
,
M.
,
Lv
,
L.
,
Sun
,
W.
, and
Song
,
X.
,
2020
, “
A Multi-Fidelity Surrogate Model Based on Support Vector Regression
,”
Struct. Multidiscipl. Optim.
,
61
(
6
), pp.
2363
2375
.
4.
Zheng
,
J.
,
Shao
,
X.
,
Gao
,
L.
,
Jiang
,
P.
, and
Qiu
,
H.
,
2015
, “
Difference Mapping Method Using Least Square Support Vector Regression for Variable-Fidelity Metamodelling
,”
Eng. Optim.
,
47
(
6
), pp.
719
736
.
5.
Fernández-Godino
,
M. G.
,
Park
,
C.
,
Kim
,
N. -H.
, and
Haftka
,
R. T.
,
2016
, “
Review of Multi-Fidelity Models
,” arXiv preprint arXiv:1609.07196.
6.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
.
7.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.
8.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
9.
Le Gratiet
,
L.
, and
Garnier
,
J.
,
2014
, “
Recursive Co-Kriging Model for Design of Computer Experiments With Multiple Levels of Fidelity
,”
Int. J. Uncertain. Quantification
,
4
(
5
), pp.
365
386
.
10.
Tripathy
,
R.
,
Bilionis
,
I.
, and
Gonzalez
,
M.
,
2016
, “
Gaussian Processes With Built-In Dimensionality Reduction: Applications to High-Dimensional Uncertainty Propagation
,”
J. Comput. Phys.
,
321
, pp.
191
223
.
11.
Jakeman
,
J. D.
,
Friedman
,
S.
,
Eldred
,
M. S.
,
Tamellini
,
L.
,
Gorodetsky
,
A. A.
, and
Allaire
,
D.
,
2022
, “
Adaptive Experimental Design for Multi-Fidelity Surrogate Modeling of Multi-disciplinary Systems
,”
Int. J. Numer. Methods Eng.
,
123
(
12
), pp.
2760
2790
.
12.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Miller
,
R. A.
,
2006
, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations
,”
Struct. Multidiscipl. Optim.
,
32
(
5
), pp.
369
382
.
13.
Lam
,
R.
,
Allaire
,
D. L.
, and
Willcox
,
K. E.
,
2015
, “
Multifidelity Optimization Using Statistical Surrogate Modeling for Non-Hierarchical Information Sources
,”
56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 5–9
.
14.
Poloczek
,
M.
,
Wang
,
J.
, and
Frazier
,
P.
,
2017
, “
Multi-Information Source Optimization
,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
15.
Ghoreishi
,
S. F.
, and
Allaire
,
D. L.
,
2018
, “
Gaussian Process Regression for Bayesian Fusion of Multi-Fidelity Information Sources
,”
2018 Multidisciplinary Analysis and Optimization Conference
,
Atlanta, GA
,
June 25–29
.
16.
Ghoreishi
,
S. F.
, and
Allaire
,
D.
,
2019
, “
Multi-Information Source Constrained Bayesian Optimization
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
977
991
.
17.
Imani
,
M.
,
Ghoreishi
,
S. F.
,
Allaire
,
D.
, and
Braga-Neto
,
U. M.
,
2019
, “
MFBO-SSM: Multi-Fidelity Bayesian Optimization for Fast Inference in State-Space Models
,”
AAAI Conference on Artificial Intelligence
,
Honolulu
,
HI, Jan. 27–Feb. 1
.
18.
Tran
,
A.
,
Sun
,
J.
,
Furlan
,
J. M.
,
Pagalthivarthi
,
K. V.
,
Visintainer
,
R. J.
, and
Wang
,
Y.
,
2019
, “
pBO-2GP-3B: A Batch Parallel Known/Unknown Constrained Bayesian Optimization With Feasibility Classification and Its Applications in Computational Fluid Dynamics
,”
Comput. Methods. Appl. Mech. Eng.
,
347
, pp.
827
852
.
19.
Tran
,
A.
,
Wildey
,
T.
, and
McCann
,
S.
,
2020
, “
sMF-BO-2CoGP: A Sequential Multi-Fidelity Constrained Bayesian Optimization Framework for Design Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031007
.
20.
Basudhar
,
A.
,
Dribusch
,
C.
,
Lacaze
,
S.
, and
Missoum
,
S.
,
2012
, “
Constrained Efficient Global Optimization With Support Vector Machines
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
201
221
.
21.
Marques
,
A.
,
Lam
,
R.
, and
Willcox
,
K.
,
2018
, “Contour Location Via Entropy Reduction Leveraging Multiple Information Sources,”
Advances in Neural Information Processing Systems
,
S.
Bengio
,
H.
Wallach
,
H.
Larochelle
,
K.
Grauman
,
N.
Cesa-Bianchi
, and
R.
Garnett
, eds., Vol. 31,
Curran Associates, Inc.
,
New York
.
22.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA. J.
,
46
(
10
), pp.
2459
2468
.
23.
Chaudhuri
,
A.
,
Marques
,
A. N.
, and
Willcox
,
K.
,
2021
, “
mfEGRA: Multifidelity Efficient Global Reliability Analysis Through Active Learning for Failure Boundary Location
,”
Struct. Multidiscipl. Optim.
,
64
(
2
), pp.
797
811
.
24.
Yi
,
J.
,
Wu
,
F.
,
Zhou
,
Q.
,
Cheng
,
Y.
,
Ling
,
H.
, and
Liu
,
J.
,
2021
, “
An Active-Learning Method Based on Multi-Fidelity Kriging Model for Structural Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
63
(
1
), pp.
173
195
.
25.
Dribusch
,
C.
,
Missoum
,
S.
, and
Beran
,
P.
,
2010
, “
A Multifidelity Approach for the Construction of Explicit Decision Boundaries: Application to Aeroelasticity
,”
Struct. Multidiscipl. Optim.
,
42
(
5
), pp.
693
705
.
26.
Shah
,
R.
,
Subbarao
,
E.
, and
Mashelkar
,
R.
,
1988
,
Heat Transfer Equipment Design; Delaware Method for Shell-Side Design
,
Hemisphere Publishing
,
New York
.
27.
Serna
,
M.
, and
Jiménez
,
A.
,
2005
, “
A Compact Formulation of the Bell–Delaware Method for Heat Exchanger Design and Optimization
,”
Chem. Eng. Res. Des.
,
83
(
5
), pp.
539
550
.
28.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
, Vol.
178
.
Wiley
,
New York
.
29.
Melchers
,
R. E.
, and
Beck
,
A. T.
,
2018
,
Structural Reliability Analysis and Prediction
,
John Wiley & Sons
,
Hoboken, NJ
.
30.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
31.
Wang
,
Q.
, and
Kounis
,
L.
,
2019
,
Reliability and Maintenance—An Overview of Cases
,
IntechOpen
,
London, UK
, pp.
71
88
.
32.
Vapnik
,
V.
,
1998
,
Statistical Learning Theory
,
Wiley
,
New York
.
33.
Basudhar
,
A.
, and
Missoum
,
S.
,
2008
, “
Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines
,”
Comput. Struct.
,
86
(
19–20
), pp.
1904
1917
.
34.
Lacaze
,
S.
, and
Missoum
,
S.
,
2015
, “
CODES: A Toolbox for Computational Design, Version 1.0
,” www.codes.arizona.edu/toolbox, Accessed January 10, 2020.
35.
Lacaze
,
S.
, and
Missoum
,
S.
,
2014
, “
A Generalized ‘max-min’ Sample for Surrogate Update
,”
Struct. Multidiscipl. Optim.
,
49
(
4
), pp.
683
687
.
36.
Platt
,
J. C.
,
1999
, “Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods,”
Advances in Large Margin Classifiers
,
A. J.
Smola
,
P.
Bartlett
,
B.
Schölkopf
and
D.
Schuurmans
, eds.,
MIT Press
,
Cambridge, MA
, pp.
61
74
.
37.
Basudhar
,
A.
, and
Missoum
,
S.
,
2010
, “
An Improved Adaptive Sampling Scheme for the Construction of Explicit Boundaries
,”
Struct. Multidiscipl. Optim.
,
42
(
4
), pp.
517
529
.
38.
Pidaparthi
,
B.
, and
Missoum
,
S.
,
2019
, “
Stochastic Optimization of Nonlinear Energy Sinks for the Mitigation of Limit Cycle Oscillations
,”
AIAA. J.
,
57
(
5
), pp.
2134
2144
.
39.
Basudhar
,
A.
,
Missoum
,
S.
, and
Sanchez
,
A. H.
,
2008
, “
Limit State Function Identification Using Support Vector Machines for Discontinuous Responses and Disjoint Failure Domains
,”
Probabilistic. Eng. Mech.
,
23
(
1
), pp.
1
11
.
40.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons
,
Hoboken, NJ
.
41.
Prasad
,
R.
, and
Bharadwaj
,
K.
,
2002
, “
Stochastic Modeling of Heat Exchanger Response to Data Uncertainties
,”
Appl. Math. Model.
,
26
(
6
), pp.
715
726
.
You do not currently have access to this content.