Abstract

The wake steering control in wind farms has gained significant attention in the last years. This control strategy has shown promise to reduce energy losses due to wake effects and increase the energy production in a wind farm. However, wind conditions are variable in wind farms, and the measurements are uncertain what should be considered in the design of wake steering control strategies. This paper proposes using the probabilistic learning on manifold (PLoM), which can be viewed as a supervised machine learning method, to enable the wake steering optimization under uncertainty. The expected power generation is estimated considering uncertainties in wind speed and direction with good accuracy and reduced computational cost for two wind farm layouts, which expand the application of machine learning models in wake steering. Furthermore, the analysis shows the potential gain with the application of wake steering control.

References

1.
Boersma
,
S.
,
Doekemeijer
,
B.
,
Gebraad
,
P.
,
Fleming
,
P.
,
Annoni
,
J.
,
Scholbrock
,
A.
,
Frederik
,
J.
, and
van Wingerden
,
J.-W.
,
2017
, “
A Tutorial on Control-Oriented Modeling and Control of Wind Farms
,”
2017 American Control Conference (ACC)
,
Seattle, WA
,
May 24–26
, pp.
1
18
.
2.
Gebraad
,
P. M. O.
,
Teeuwisse
,
F. W.
,
van Wingerden
,
J.
,
Fleming
,
P. A.
,
Ruben
,
S. D.
,
Marden
,
J.
, and
Pao
,
L. Y.
,
2016
, “
Wind Plant Power Optimization Through Yaw Control Using a Parametric Model for Wake Effects—A CFD Simulation Study
,”
Wind Energy
,
19
(
1
), pp.
95
114
.
3.
King
,
J.
,
Fleming
,
P.
,
King
,
R.
,
Martinez-Tossas
,
L. A.
,
Bay
,
C.
,
Mudafort
,
R.
, and
Simley
,
E.
,
2021
, “
Control-Oriented Model for Secondary Effects of Wake Steering
,”
Wind Energy Sci.
,
6
(
3
), pp.
701
714
.
4.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2019
, “
Wind Farm Power Optimization Via Yaw Angle Control: A Wind Tunnel Study
,”
J. Renew Sustain Energy
,
11
(
2
), p.
023301
.
5.
Campagnolo
,
F.
,
Petrović
,
V.
,
Bottasso
,
C.
, and
Croce
,
A.
,
2016
, “
Wind Tunnel Testing of Wake Control Strategies
,”
2016 American Control Conference (ACC)
,
Boston, MA
,
July 6–8
, pp.
513
518
.
6.
Bensason
,
D.
,
Simley
,
E.
,
Roberts
,
O.
,
Fleming
,
P.
,
Debnath
,
M.
,
King
,
J.
,
Bay
,
C.
, and
Mudafort
,
R.
,
2021
, “
Evaluation of the Potential for Wake Steering for U.S. Land-Based Wind Power Plants
,”
J. Renew Sustain Energy
,
13
(
3
), p.
033303
.
7.
Fleming
,
P.
,
King
,
J.
,
Dykes
,
K.
,
Simley
,
E.
,
Roadman
,
J.
,
Scholbrock
,
A.
,
Murphy
,
P.
,
Lundquist
,
J.
,
Moriarty
,
P.
,
Fleming
,
K.
,
van Dam
,
J.
,
Bay
,
C.
,
Mudafort
,
R.
,
Lopez
,
H.
,
Skopek
,
J.
,
Scott
,
M.
,
Ryan
,
B.
,
Guernsey
,
C.
, and
Brake
,
D.
,
2019
, “
Initial Results From a Field Campaign of Wake Steering Applied at a Commercial Wind Farm—Part 1
,”
Wind Energy Sci.
,
4
(
2
), pp.
273
285
.
8.
Zhang
,
J.
, and
Zhao
,
X.
,
2020
, “
Quantification of Parameter Uncertainty in Wind Farm Wake Modeling
,”
Energy
,
196
, p.
117065
.
9.
Simley
,
E.
,
Fleming
,
P.
, and
King
,
J.
,
2020
, “
Design and Analysis of a Wake Steering Controller With Wind Direction Variability
,”
Wind Energy Sci.
,
5
(
2
), pp.
451
468
.
10.
Quick
,
J.
,
King
,
J.
,
King
,
R. N.
,
Hamlington
,
P. E.
, and
Dykes
,
K.
,
2020
, “
Wake Steering Optimization Under Uncertainty
,”
Wind Energy Sci.
,
5
(
1
), pp.
413
426
.
11.
van Beek
,
M. T.
,
Viré
,
A.
, and
Andersen
,
S. J.
,
2021
, “
Sensitivity and Uncertainty of the FLORIS Model Applied on the Lillgrund Wind Farm
,”
Energies
,
14
(
5
), p.
1293
.
12.
Meyers
,
J.
,
Bottasso
,
C.
,
Dykes
,
K.
,
Fleming
,
P.
,
Gebraad
,
P.
,
Giebel
,
G.
,
Göçmen
,
T.
, and
van Wingerden
,
J.-W.
,
2022
, “
Wind Farm Flow Control: Prospects and Challenges
,”
Wind Energy Sci. Discuss.
,
2022
, pp.
1
56
.
13.
Sun
,
H.
,
Qiu
,
C.
,
Lu
,
L.
,
Gao
,
X.
,
Chen
,
J.
, and
Yang
,
H.
,
2020
, “
Wind Turbine Power Modelling and Optimization Using Artificial Neural Network With Wind Field Experimental Data
,”
Appl. Energy
,
280
, p.
115880
.
14.
Ti
,
Z.
,
Deng
,
X. W.
, and
Zhang
,
M.
,
2021
, “
Artificial Neural Networks Based Wake Model for Power Prediction of Wind Farm
,”
Renew Energy
,
172
, pp.
618
631
.
15.
Harrison-Atlas
,
D.
,
King
,
R. N.
, and
Glaws
,
A.
,
2022
, “
Machine Learning Enables National Assessment of Wind Plant Controls With Implications for Land Use
,”
Wind Energy
,
25
(
4
), pp.
618
638
.
16.
Zhang
,
J.
, and
Zhao
,
X.
,
2022
, “
Wind Farm Wake Modeling Based on Deep Convolutional Conditional Generative Adversarial Network
,”
Energy
,
238
, p.
121747
.
17.
Soize
,
C.
, and
Ghanem
,
R.
,
2016
, “
Data-Driven Probability Concentration and Sampling on Manifold
,”
J. Comput. Phys.
,
321
, pp.
242
258
.
18.
Soize
,
C.
, and
Ghanem
,
R.
,
2020
, “
Probabilistic Learning on Manifolds
,”
Found. Data Sci.
,
2
(
3
), pp.
279
307
.
19.
Ghanem
,
R.
,
Soize
,
C.
,
Safta
,
C.
,
Lacaze
,
X. H. G.
,
Oefelein
,
J.
, and
Najm
,
H. N.
,
2019
, “
Design Optimization of a Scramjet Under Uncertainty Using Probabilistic Learning on Manifolds
,”
J. Comput. Phys.
,
399
, p.
108930
.
20.
Ghanem
,
R.
,
Soize
,
C.
, and
Thimmisetty
,
C.
,
2018
, “
Optimal Well-Placement Using a Probabilistic Learning
,”
Data-Enabled Discov. Appl.
,
2
(
1
), pp.
1
16
.
21.
NREL
,
2021
,
FLORIS
, version 2.4. GitHub, https://github.com/NREL/floris
22.
Martinez-Tossas
,
L.
,
Annoni
,
J.
,
Fleming
,
P.
, and
Churchfield
,
M.
,
2019
, “
The Aerodynamics of the Curled Wake: A Simplified Model in View of Flow Control
,”
Wind Energy Sci.
,
4
(
1
), pp.
127
138
.
23.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2016
, “
Experimental and Theoretical Study of Wind Turbine Wakes in Yawed Conditions
,”
J. Fluid Mech.
,
806
, pp.
506
541
.
24.
Soize
,
C.
, and
Ghanem
,
R.
,
2022
, “
Probabilistic Learning on Manifolds (PLoM) With Partition
,”
Int. J. Numer. Methods Eng.
,
123
(
1
), pp.
268
290
.
You do not currently have access to this content.