Abstract

Digital twin (DT) emerges as a key concept of the Industry 4.0 paradigm and beyond. However, the current literature lacks focus on humans and human activities as a part of complex system DTs. Acknowledging human aspects in DTs can enhance work performance, well-being, motivation, and personal development of professionals. This study examines emerging requirements for human digital twins (HDTs) in three use cases of industry–academia collaboration on complex systems. The results draw together the overall design problem and four design objectives for HDTs. We propose to combine the machine and human-related aspects of DTs and highlight the need for virtual-to-virtual interoperability between HDTs and machines alike. Furthermore, we outline differences between humans and machines regarding digital twinning by addressing human activities and knowledge-based behavior on systems. Design of HDTs requires understanding of individual professional characteristics, such as skills and information preferences, together with twinning between the physical and digital machine entities and interactions between the human and machine DTs. As the field moves toward including humans as a part of the DT concept, incorporating HDTs in complex systems emerges as an increasingly significant issue.

References

1.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,”
White Paper
,
1
, pp.
1
7
.
2.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems,”
Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches
, 1st ed.,
F. Kahlen
,
S. Flumerfelt
,
and A. Alves
, eds.,
Springer
,
Switzerland
, pp.
85
113
.
3.
Mayani
,
M. G.
,
Svendsen
,
M.
, and
Oedegaard
,
S. I.
,
2018
, “
Drilling Digital Twin Success Stories the Last 10 Years
,”
SPE Norway One Day Seminar 2018
,
Bergen, Norway
,
Apr. 18
, pp.
290
302
.
4.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
1818
.
5.
Tao
,
F.
, and
Zhang
,
M.
,
2017
, “
Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing
,”
IEEE Access
,
5
, pp.
20418
20427
.
6.
Qi
,
Q.
, and
Tao
,
F.
,
2018
, “
Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360° Comparison
,”
IEEE Access
,
6
, pp.
3585
3593
.
7.
Qi
,
Q.
,
Tao
,
F.
,
Zuo
,
Y.
, and
Zhao
,
D.
,
2018
, “
Digital Twin Service Towards Smart Manufacturing
,”
Procedia CIRP
,
72
, pp.
237
242
.
8.
Fuller
,
A.
,
Fan
,
Z.
,
Day
,
C.
, and
Barlow
,
C.
,
2020
, “
Digital Twin: Enabling Technologies, Challenges and Open Research
,”
IEEE Access
,
8
, p.
108952
.
9.
Shengli
,
W.
,
2021
, “
Is Human Digital Twin Possible?
,”
Comput. Methods Programs Biomed. Update
,
1
, p.
100014
.
10.
Sparrow
,
D.
,
Kruger
,
K.
, and
Basson
,
A.
,
2019
, “
Human Digital Twin for Integrating Human Workers in Industry 4.0
,”
International Conference on Competitive Manufacturing (COMA 2019)
,
Stellenbosch, South Africa
,
Jan. 30–Feb. 1
, pp.
259
265
.
11.
Lu
,
Y.
,
Liu
,
C.
,
Kevin
,
I.
,
Wang
,
K.
,
Huang
,
H.
, and
Xu
,
X.
,
2020
, “
Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues
,”
Rob. Comput.-Integr. Manuf.
,
61
, p.
101837
.
12.
Vaishnavi
,
V. K.
,
2007
,
Design Science Research Methods and Patterns: Innovating Information and Communication Technology
, 1st ed.,
Auerbach Publications
,
New York
, pp.
1
248
.
13.
Peffers
,
K.
,
Tuunanen
,
T.
,
Rothenberger
,
M. A.
, and
Chatterjee
,
S.
,
2007
, “
A Design Science Research Methodology for Information Systems Research
,”
J. Manage. Inf. Syst.
,
24
(
3
), pp.
45
77
.
14.
Gregor
,
S.
,
Kruse
,
L. C.
, and
Seidel
,
S.
,
2020
, “
Research Perspectives: The Anatomy of a Design Principle
,”
J. Assoc. Inf. Syst.
,
21
(
6
), p.
2
.
15.
Ladyman
,
J.
,
Lambert
,
J.
, and
Wiesner
,
K.
,
2013
, “
What Is a Complex System?
,”
Eur. J. Philos. Sci.
,
3
(
1
), pp.
33
67
.
16.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y.
,
2018
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2405
2415
.
17.
Liu
,
M.
,
Fang
,
S.
,
Dong
,
H.
, and
Xu
,
C.
,
2021
, “
Review of Digital Twin About Concepts, Technologies, and Industrial Applications
,”
J. Manuf. Syst.
,
58
, pp.
346
361
.
18.
Vernim
,
S.
,
Walzel
,
H.
,
Knoll
,
A.
, and
Reinhart
,
G.
,
2017
, “
Towards Capability-Based Worker Modelling in a Smart Factory
,”
2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
,
Singapore
,
Dec. 10–13
, IEEE, pp.
1576
1580
.
19.
Peruzzini
,
M.
,
Grandi
,
F.
, and
Pellicciari
,
M.
,
2020
, “
Exploring the Potential of Operator 4.0 Interface and Monitoring
,”
Comput. Ind. Eng.
,
139
, p.
105600
.
20.
Ruppert
,
T.
,
Jaskó
,
S.
,
Holczinger
,
T.
, and
Abonyi
,
J.
,
2018
, “
Enabling Technologies for Operator 4.0: A Survey
,”
Appl. Sci.
,
8
(
9
), p.
1650
.
21.
Othman
,
M.
,
Gouw
,
G. J.
, and
Bhuiyan
,
N.
,
2012
, “
Workforce Scheduling: A New Model Incorporating Human Factors
,”
J. Ind. Eng. Manage. (JIEM)
,
5
(
2
), pp.
259
284
.
22.
Nikolakis
,
N.
,
Alexopoulos
,
K.
,
Xanthakis
,
E.
, and
Chryssolouris
,
G.
,
2019
, “
The Digital Twin Implementation for Linking the Virtual Representation of Human-Based Production Tasks to Their Physical Counterpart in the Factory-Floor
,”
Int. J. Comput. Integr. Manuf.
,
32
(
1
), pp.
1
12
.
23.
Wang
,
Q.
,
Jiao
,
W.
,
Wang
,
P.
, and
Zhang
,
Y.
,
2020
, “
Digital Twin for Human-Robot Interactive Welding and Welder Behavior Analysis
,”
IEEE/CAA J. Automatica Sinica
,
8
(
2
), pp.
334
343
.
24.
Graessler
,
I.
, and
Poehler
,
A.
,
2018
, “
Intelligent Control of an Assembly Station by Integration of a Digital Twin for Employees Into the Decentralized Control System
,”
Procedia Manuf.
,
24
, pp.
185
189
.
25.
Martinez-Velazquez
,
R.
,
Gamez
,
R.
, and
El Saddik
,
A.
,
2019
, “
Cardio Twin: A Digital Twin of the Human Heart Running on the Edge
,”
2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
,
Istanbul, Turkey
,
June 26–28
, IEEE, pp.
1
6
.
26.
Barricelli
,
B. R.
,
Casiraghi
,
E.
,
Gliozzo
,
J.
,
Petrini
,
A.
, and
Valtolina
,
S.
,
2020
, “
Human Digital Twin for Fitness Management
,”
IEEE Access
,
8
, pp.
26637
26664
.
27.
Chakshu
,
N. K.
,
Sazonov
,
I.
, and
Nithiarasu
,
P.
,
2021
, “
Towards Enabling a Cardiovascular Digital Twin for Human Systemic Circulation Using Inverse Analysis
,”
Biomech. Model. Mechanobiol.
,
20
(
2
), pp.
449
465
.
28.
Elayan
,
H.
,
Aloqaily
,
M.
, and
Guizani
,
M.
,
2021
, “
Digital Twin for Intelligent Context-Aware Iot Healthcare Systems
,”
IEEE Internet of Things J.
,
6
(
23
), pp.
16749
16757
.
29.
Liu
,
Y.
,
Zhang
,
L.
,
Yang
,
Y.
,
Zhou
,
L.
,
Ren
,
L.
,
Wang
,
F.
,
Liu
,
R.
,
Pang
,
Z.
, and
Deen
,
M. J.
,
2019
, “
A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin
,”
IEEE Access
,
7
, pp.
49088
49101
.
You do not currently have access to this content.