Robotic rehabilitation for ankle injuries offers several advantages in terms of precision, force accuracy, and task-specific training. While the existing platform-based ankle rehabilitation robots tend to provide a rotation center that does not coincide with the actual ankle joint. In this paper, a novel bio-inspired ankle rehabilitation robot was designed, which is wearable and can keep the participant's shank be stationary. The robot is redundantly actuated by four motors in parallel to offer three ankle rotation degrees-of-freedom (DOFs) with sufficient range of motion (ROM) and force capacity. To control the robotic rehabilitation device operated in a repetitive trajectory training manner, a model-free robust control method in form of iterative feedback tuning (IFT) is proposed to tune the robot controller parameters. Experiments were performed on the parallel ankle rehabilitation platform to investigate the efficacy of the design and the robustness of the IFT technique under real-life rehabilitation scenarios.

References

1.
Zhang
,
M.
,
Davies
,
T. C.
, and
Xie
,
S.
,
2013
, “
Effectiveness of Robot-Assisted Therapy on Ankle Rehabilitation—A Systematic Review
,”
J. NeuroEng. Rehabil.
,
10
(
30
), pp. 1–16.
2.
Van Peppen
,
R. P.
,
Kwakkel
,
G.
,
Wood-Dauphinee
,
S.
,
Hendriks
,
H. J.
,
Van der Wees
,
P. J.
, and
Dekker
,
J.
,
2004
, “
The Impact of Physical Therapy on Functional Outcomes After Stroke: What's the Evidence?
Clin. Rehabil.
,
18
(
8
), pp.
833
862
.
3.
Girone
,
M.
,
Burdea
,
G.
,
Bouzit
,
M.
,
Popescu
,
V.
, and
Deutsch
,
J. E.
,
2001
, “
A Stewart Platform-Based System for Ankle Telerehabilitation
,”
Auton. Rob.
,
10
(
2
), pp.
203
212
.
4.
Boian
,
R. F.
,
Bouzit
,
M.
,
Burdea
,
G. C.
, and
Deutsch
,
J. E.
,
2005
, “
Dual Stewart Platform Mobility Simulator
,”
International Conference on Rehabilitation Robotics
, San Francisco, CA, Sept. 1–5, pp.
4848
4851
.
5.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
A High-Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1216
1227
.
6.
McDaid
,
A.
,
Tsoi
,
Y. H.
, and
Xie
,
S.
,
2013
, “
MIMO Actuator Force Control of a Parallel Robot for Ankle Rehabilitation
,”
Interdisciplinary Mechatronics
,
Wiley
,
New York
.
7.
Jamwal
,
P. K.
,
Xie
,
S. Q.
,
Hussain
,
S.
, and
Parsons
,
J. G.
,
2014
, “
An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
64
75
.
8.
Huo
,
W.
,
Mohammed
,
S.
,
Moreno
,
J. C.
, and
Amirat
,
Y.
,
2014
, “
Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art
,”
IEEE Syst. J.
,
PP
(
99
), pp.
1
14
.
9.
Hjalmarsson
,
H.
,
2002
, “
Iterative Feedback Tuning—An Overview
,”
Int. J. Adapt. Control Signal Process.
,
16
(
5
), pp.
373
395
.
10.
Kissling
,
S.
,
Blanc
,
P.
,
Myszkorowski
,
P.
, and
Vaclavik
,
I.
,
2009
, “
Application of Iterative Feedback Tuning (IFT) to Speed and Position Control of a Servo Drive
,”
Control Eng. Pract.
,
17
(
7
), pp.
834
840
.
11.
De Bruyne
,
F.
,
2003
, “
Iterative Feedback Tuning for Internal Model Controllers
,”
Control Eng. Pract.
,
11
(
9
), pp.
1043
1048
.
12.
Hamamoto
,
K.
,
Fukuda
,
T.
, and
Sugie
,
T.
,
2003
, “
Iterative Feedback Tuning of Controllers for a Two-Mass-Spring System With Friction
,”
Control Eng. Pract.
,
11
(
9
), pp.
1061
1068
.
13.
Freeman
,
C. T.
,
Rogers
,
E.
,
Hughes
,
A.-M.
,
Burridge
,
J. H.
, and
Meadmore
,
K. L.
,
2012
, “
Iterative Learning Control in Health Care: Electrical Stimulation and Robotic-Assisted Upper-Limb Stroke Rehabilitation
,”
IEEE Control Syst.
,
32
(
1
), pp.
18
43
.
14.
Meadmore
,
K. L.
,
Hughes
,
A.-M.
,
Freeman
,
C. T.
,
Cai
,
Z.
,
Tong
,
D.
,
Burridge
,
J. H.
, and
Rogers
,
E.
,
2012
, “
Functional Electrical Stimulation Mediated by Iterative Learning Control and 3D Robotics Reduces Motor Impairment in Chronic Stroke
,”
J. NeuroEng. Rehabil.
,
9
(
32
), pp. 1–11.
15.
Duschau-Wicke
,
A.
,
Zitzewitz
,
J.
,
Banz
,
R.
, and
Reiner
,
R.
,
2007
, “
Iterative Learning Synchronization of Robotic Rehabilitation Tasks
,”
10th International Conference on Rehabilitation Robotics
, Noordwijk, The Netherlands, June 13–15, pp.
335
340
.
16.
Balasubramanian
,
S.
,
Ruihua
,
W.
,
Perez
,
M.
,
Shepard
,
B.
,
Koeneman
,
E.
,
Koeneman
,
J.
, and
He
,
J.
,
2008
, “
RUPERT: An Exoskeleton Robot for Assisting Rehabilitation of Arm Functions
,”
Virtual Rehabilitation
, Vancouver, Canada, Aug. 25–27, pp.
163
167
.
17.
Siegler
,
S.
,
Chen
,
J.
, and
Schneck
,
C. D.
,
1988
, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints—Part I: Kinematics
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
364
373
.
18.
Xie
,
S. Q.
,
2015
, “
Development of the Ankle Rehabilitation Robot
,”
Advanced Robotics for Medical Rehabilitation
(
Springer Tracts in Advanced Robotics
), Vol.
108
, Springer International Publishing, Switzerland, pp.
223
257
.
19.
Kora
,
K.
,
Lu
,
C. Z.
, and
McDaid
,
A. J.
,
2014
, “
Automatic Tuning With Feedforward Compensation of the HuREx Rehabilitation System
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Besancon, France, July 8–11, pp.
1504
1509
.
20.
Meng
,
W.
,
Liu
,
Q.
,
Zhou
,
Z.
,
Ai
,
Q.
, and
Xie
,
S.
,
2015
, “
Recent Development of Mechanisms and Control Strategies for Robot-Assisted Lower Limb Rehabilitation
,”
Mechatronics
,
31
, pp.
132
145
.
You do not currently have access to this content.