In this paper, two approaches for computing the topological information content of function models in mechanical engineering design are developed and compared. Previously, a metric for computing information content of functions and flows within function models was proposed. Here, this metric is evolved to include the information contained in the connections between flows and functions in a function model. The first approach is based on uniform unconditional probability of a flow connecting any two functions within the model. The second approach is based on additional knowledge that the functions and flows in a model have limited compatibility, thereby, reducing the choices for origin and destination functions for each flow. This additional knowledge is represented using a new graphical representation supported by syntactic grammar rules. Both approaches are then applied to an example function model. Comparison between the approaches shows that the inclusion of this additional knowledge increases the expressiveness by reducing the uncertainty associated with function models.

1.
Dym
,
C. L.
, 1994, “
Representing Designed Artifacts: The Languages of Engineering Design
,”
Arch. Comput. Methods Eng.
1134-3060,
1
, pp.
75
108
.
2.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
, 2007,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London, UK
.
3.
Summers
,
J. D.
,
Vargas-Hernández
,
N.
,
Zhao
,
Z.
,
Shah
,
J. J.
, and
Lacroix
,
Z.
, 2001, “
Comparative Study of Representation Structures for Modeling Function and Behavior of Mechanical Devices
,”
ASME
Paper No. CIE-21243.
4.
Summers
,
J. D.
, 2005, “
Expressiveness of the Design Exemplar
,”
ASME
Paper No. CIE-85135.
5.
Luger
,
G. F.
, 2002,
Artificial Intelligence: Structures and Strategies for Complex Problem Solving
,
Addison-Wesley
,
Essex, UK
.
6.
Winston
,
P. H.
, 1992,
Artificial Intelligence
,
Addison-Wesley
,
Reading, MA
.
7.
Rich
,
E.
, and
Knight
,
K.
, 1991,
Artificial Intelligence
,
McGraw-Hill
,
New York, NY
.
8.
Baader
,
F.
, 1996, “
A Formal Definition for the Expressive Power of Terminological Knowledge Representation Languages
,”
Journal of Logic and Computation
,
6
(
1
), pp.
33
54
.
9.
Woods
,
W. A.
, 1983, “
What’s Important About Knowledge Representation
,”
Computer
0018-9162,
16
(
10
), pp.
22
26
.
10.
Coste-Marquis
,
S.
,
Lang
,
J.
,
Liberatore
,
P.
, and
Marquis
,
P.
, 2004, “
Expressive Power and Succinctness of Propositional Languages for Preference Representation
,”
Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR’04)
, Whistler, Canada, pp.
203
212
.
11.
Nebel
,
B.
, 2000, “
On the Compilability and Expressive Power of Propositional Planning Formalisms
,”
J. Artif. Intell. Res.
1076-9757,
12
, pp.
271
315
.
12.
Panchal
,
J. H.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2009, “
Managing Design-Process Complexity: A Value-of-Information Based Approach for Scale and Decision Decoupling
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
9
(
2
), p.
021005
.
13.
Sen
,
C.
,
Caldwell
,
B. W.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
, 2010, “
Evaluation of the Functional Basis Using an Information Theoretic Approach
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
24
(
1
), pp.
85
103
.
14.
Ullman
,
D. G.
, 1992,
The Mechanical Design Process
,
McGraw-Hill
,
New York
.
15.
Otto
,
K. N.
, and
Wood
,
K. L.
, 2001,
Product Design Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
16.
Collins
,
J. A.
,
Hagan
,
B. T.
, and
Bratt
,
H. M.
, 1976, “
Failure-Experience Matrix—A Useful Design Tool
,”
ASME J. Eng. Ind.
0022-0817,
98
(
3
), pp.
1074
1079
.
17.
Kirschman
,
C. F.
, and
Fadel
,
G. M.
, 1998, “
Classifying Functions for Mechanical Design
,”
ASME J. Mech. Des.
0161-8458,
120
(
3
), pp.
475
482
.
18.
Arunajadai
,
S. G.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
, 2002, “
A Framework for Creating a Function-Based Design Tool for Failure Mode Identification
,”
ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, Canada, Sep. 29–Oct. 2.
19.
Bohm
,
M. R.
, and
Stone
,
R. B.
, 2004, “
Product Design Support: Exploring a Design Repository System
,”
ASME International Mechanical Engineering Congress
, Anaheim, CA, Nov. 13–19.
20.
Bohm
,
M. R.
, and
Stone
,
R. B.
, 2004, “
Representing Functionality to Support Reuse: Conceptual and Supporting Functions
,”
ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Salt Lake City, UT, Sep. 28–Oct. 2.
21.
Bohm
,
M. R.
,
Stone
,
R. B.
,
Simpson
,
T. W.
, and
Steva
,
E. D.
, 2006, “
Introduction of a Data Schema: The Inner Workings of a Design Repository
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Philadelphia, PA, Sep. 10–13.
22.
Bohm
,
M. R.
,
Stone
,
R. B.
, and
Szykman
,
S.
, 2003, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, IL, Sep. 2–6.
23.
Bohm
,
M. R.
,
Stone
,
R. B.
, and
Szykman
,
S.
, 2005, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
5
(
4
), pp.
360
72
.
24.
Bryant
,
C. R.
,
McAdams
,
D. A.
, and
Stone
,
R. B.
, 2006, “
A Validation Study of an Automated Concept Generator Design Tool
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Philadelphia, PA, Sep. 10–13.
25.
Caldwell
,
B. W.
, and
Mocko
,
G. M.
, 2007, “
Towards Rules for Functional Composition
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Brooklyn, NY, Aug. 3–6.
26.
Caldwell
,
B. W.
,
Sen
,
C.
,
Mocko
,
G. M.
,
Summers
,
J. D.
, and
Fadel
,
G. M.
, 2008, “
Empirical Examination of the Functional Basis and Design Repository
,”
Third International Conference on Design Computing and Cognition
, Atlanta, GA, Jun. 23–25.
27.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
0934-9839,
13
(
2
), pp.
65
82
.
28.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Bryant
,
C. R.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
, 2005, “
Deriving a Component Basis for Computational Functional Synthesis
,”
International Conference on Engineering Design, ICED ’05
, Melbourne, Australia, Aug. 15–18.
29.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Gonzales
,
J.
,
Bryant
,
C. R.
, and
Stone
,
R. B.
, 2005, “
Capturing Empirically Derived Design Knowledge for Creating Conceptual Design Configurations
,”
ASME 2005 International Design Engineering and Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA, Sep. 24–28.
30.
McAdams
,
D. A.
, and
Wood
,
K.
, 2002, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
0161-8458,
124
(
2
), pp.
173
182
.
31.
Sen
,
C.
,
Caldwell
,
B. W.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
, 2009, “
Topological Information Content and Expressiveness of Function Models in Mechanical Design
,”
ASME 2009 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, San Diego, CA, Aug. 30–Sep. 2.
32.
Sridharan
,
P.
, and
Campbell
,
M. I.
, 2004, “
A Grammar for Function Structures
,”
ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Salt Lake City, UT, Sep. 28–Oct. 2.
33.
Sridharan
,
P.
, and
Campbell
,
M. I.
, 2005, “
A Study on the Grammatical Construction of Function Structures
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
19
(
3
), pp.
139
160
.
34.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Stock
,
M. E.
, 2005, “
Linking Product Functionality to Historic Failures to Improve Failure Analysis in Design
,”
Res. Eng. Des.
0934-9839,
16
(
1–2
), pp.
96
108
.
35.
Stone
,
R. B.
, and
Wood
,
K. L.
, 2000, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
359
370
.
36.
Shu
,
L. H.
,
Stone
,
R. B.
,
McAdams
,
D. A.
, and
Greer
,
J. L.
, 2007, “
Integrating Function-Based and Biomimetic Design for Automatic Concept Generation
,”
International Conference on Engineering Design, (ICED’07)
, Paris, France, Aug. 28–31.
37.
Cagan
,
J.
,
Campbell
,
M. I.
, and
Finger
,
S.
, 2005, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
5
(
3
), pp.
171
181
.
38.
Shannon
,
C. E.
, 1948, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
0005-8580,
27
, pp.
379
423
and 623–656.
39.
Kruse
,
R. L.
, and
Ryba
,
A. J.
, 1999,
Data Structures and Program Design in C
,
Prentice-Hall
,
Upper Saddle River, NJ
.
40.
Ameri
,
F.
,
Summers
,
J. D.
,
Mocko
,
G. M.
, and
Porter
,
M.
, 2008, “
Engineering Design Complexity: An Experimental Study of Methods and Measures
,”
Res. Eng. Des.
0934-9839,
19
(
2–3
), pp.
161
179
.
41.
Suh
,
N. P.
, 1990,
The Principles of Design
,
Oxford University Press
,
New York
.
42.
Summers
,
J. D.
, and
Shah
,
J. J.
, 2010, “
Mechanical Engineering Design Complexity Metrics: Size, Coupling, and Solvability
,”
ASME J. Mech. Des.
0161-8458,
132
(
2
), p.
021004
.
You do not currently have access to this content.