Abstract

It is well known that the variability and complexity of projection proportionality factors of dual projective synchronization (DPS) can effectively enhance signal confidentiality. However, in most literatures, the proportionality factors are some simple fixed constants, which can't ensure high security of information. For two pairs of fractional-order hyperchaotic systems (FOHS), how to expand the projection proportionality factors to increase its complexity? Then, our work will propose a new synchronization type, i.e., Dual Function Matrix Projective Synchronization (DFMPS) and realize the DFMPS for FOHS for the first time. Firstly, based on the traditional DPS, we generalize the proportionality factors to a function matrix depending on time t, present the error functions and define the DFMPS. Then, for FOHS, the active controller and synchronization condition are designed and proved. At the same time, when the system is affected by parameter disturbances, the active controller can eliminate the influence of parameter disturbances to the system's DFMPS, which indicates that the proposed control strategy has strong robustness. Finally, the DFMPS of two pairs of fractional-order hyperchaotic Chen and Rabinovich systems are realized, and synchronizing analysis and system robustness analysis are verified by numerical simulation. Particularly, the DFMPS can be degenerated to dual antisynchronization, dual complete synchronization, DPS, modified DPS and dual matrix projective synchronization. This work extends the synchronization types for FOHS and offers a useful method to explore DFMPS for other fractional-order systems.

References

1.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.10.1103/PhysRevLett.64.821
2.
Dar
,
M. R.
,
Kant
,
N. A.
, and
Khanday
,
F. A.
,
2017
, “
Electronic Implementation of Fractional-Order Newton–Leipnik Chaotic System With Application to Communication
,”
ASME J. Comput. Nonlinear Dyn.
,
12
, p.
054502
.
3.
Mohammadzadeh
,
A.
, and
Ghaemi
,
S.
,
2017
, “
Synchronization of Uncertain Fractional-Order Hyperchaotic Systems by Using a New Self-Evolving Non-Singleton Type-2 Fuzzy Neural Network and Its Application to Secure Communication
,”
Nonlinear Dyn.
,
88
(
1
), pp.
1
19
.10.1007/s11071-016-3227-x
4.
Azar
,
A. T.
,
Vaidyanathan
,
S.
, and
Ouannas
,
A.
,
2017
,
Fractional Order Control and Synchronization of Chaotic Systems
,
Springer International Publishing
,
Switzerland
.
5.
Wang
,
G.
,
Lu
,
S. W.
,
Liu
,
W. B.
, and
Ma
,
R. N.
,
2021
, “
Adaptive Complete Synchronization of Two Complex Networks With Uncertain Parameters, Structures, and Disturbances
,”
J. Comput. Sci.
,
54
, p.
101436
.10.1016/j.jocs.2021.101436
6.
Han
,
J.
,
Chen
,
G. C.
, and
Hu
,
J. H.
,
2022
, “
New Results on Anti-Synchronization in Predefined-Time for a Class of Fuzzy Inertial Neural Networks With Mixed Time Delays
,”
Neurocomputing
,
495
, pp.
26
36
.10.1016/j.neucom.2022.04.120
7.
Jiang
,
C. M.
,
Zhang
,
F. F.
,
Qin
,
H. Y.
, and
Li
,
T. X.
,
2017
, “
Anti-Synchronization of Fractional-Order Chaotic Complex Systems With Unknown Parameters Via Adaptive Control
,”
J. Nonlinear Sci. Appl.
,
10
(
11
), pp.
5608
5621
.10.22436/jnsa.010.11.02
8.
Erjaee
,
G. H.
, and
Momani
,
S.
,
2008
, “
Phase Synchronization in Fractional Differential Chaotic Systems
,”
Phys. Lett. A
,
372
(
14
), pp.
2350
2354
.10.1016/j.physleta.2007.11.065
9.
He
,
S. B.
,
Sun
,
K. H.
,
Wang
,
H. H.
,
Mei
,
X. Y.
, and
Sun
,
Y. F.
,
2018
, “
Generalized Synchronization of Fractional-Order Hyperchaotic Systems and Its DSP Implementation
,”
Nonlinear Dyn.
,
92
(
1
), pp.
85
96
.10.1007/s11071-017-3907-1
10.
Ding
,
Z. X.
,
Chen
,
C.
,
Wen
,
S. P.
,
Li
,
S.
, and
Wang
,
L. H.
,
2022
, “
Lag Projective Synchronization of Nonidentical Fractional Delayed Memristive Neural Networks
,”
Neurocomputing
,
469
, pp.
138
150
.10.1016/j.neucom.2021.10.061
11.
Delavari
,
H.
, and
Mohadeszadeh
,
M.
,
2016
, “
Adaptive Modified Hybrid Robust Projective Synchronization Between Identical and Non-Identical Fractional-Order Complex Chaotic Systems With Fully Unknown Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
11
, p.
041023
.10.1115/1.4033385
12.
Wang
,
F.
, and
Zheng
,
Z. W.
,
2019
, “
Quasi-Projective Synchronization of Fractional Order Chaotic Systems Under Input Saturation
,”
Phys. A
,
534
, p.
122132
.10.1016/j.physa.2019.122132
13.
He
,
J. M.
,
Chen
,
F. Q.
,
Lei
,
T. F.
, and
Bi
,
Q. S.
,
2020
, “
Global Adaptive Matrix-Projective Synchronization of Delayed Fractional Order Competitive Neural Network With Different Time Scales
,”
Neural Comput. Appl.
,
32
(
16
), pp.
12813
12826
.10.1007/s00521-020-04728-7
14.
He
,
J. M.
,
Chen
,
F. Q.
, and
Lei
,
T. F.
,
2018
, “
Fractional Matrix and Inverse Matrix Projective Synchronization Methods for Synchronizing the Disturbed Fractional-Order Hyperchaotic System
,”
Math. Method. Appl. Sci.
,
41
(
16
), pp.
6907
6920
.10.1002/mma.5203
15.
Zhang
,
L. L.
,
Fu
,
X. Y.
,
Wang
,
Y. H.
,
Lei
,
Y. F.
, and
Chen
,
X. S.
,
2021
, “
Matrix Projective Synchronization for a Class of Discrete-Time Complex Networks With Commonality Via Controlling the Crucial Node
,”
Neurocomputing
,
461
, pp.
360
369
.10.1016/j.neucom.2021.07.069
16.
Liu
,
Y.
, and
Davis
,
P.
,
2000
, “
Dual Synchronization of Chaos
,”
Phys. Rev. E
,
61
(
3
), pp.
R2176
R2179
.10.1103/PhysRevE.61.R2176
17.
Uchida
,
A.
,
Kinugawa
,
S.
,
Matsuura
,
T.
, and
Yoshimori
,
S.
,
2003
, “
Dual Synchronization of Chaos in One-Way Microchip Lasers
,”
Phys. Rev. E
,
67
(
2
), pp.
26220
26227
.10.1103/PhysRevE.67.026220
18.
Ning
,
D.
,
Lu
,
J.
, and
Han
,
X.
,
2007
, “
Dual Synchronization Based on Two Different Chaotic Systems: Lorenz and Rossler Systems
,”
J. Comput. Appl. Math.
,
206
(
2
), pp.
1046
1050
.10.1016/j.cam.2006.09.007
19.
Ghosh
,
D.
, and
Chowdhury
,
A. R.
,
2010
, “
Dual-Anticipating, Dual and Dual-Lag Synchronization in Modulated Time-Delayed Systems
,”
Phys. Lett. A
,
374
(
34
), pp.
3425
3436
.10.1016/j.physleta.2010.06.050
20.
Ghosh
,
D.
,
2011
, “
Projective-Dual Synchronization in Delay Dynamical Systems With Time-Varying Coupling Delay
,”
Nonlinear Dyn.
,
66
(
4
), pp.
717
730
.10.1007/s11071-011-9945-1
21.
Almatroud Othman
,
A.
,
Noorani
,
M. S. M.
, and
Al-Sawalha
,
M. M.
,
2016
, “
Adaptive Dual Synchronization of Chaotic and Hyperchaotic Systems With Fully Uncertain Parameters
,”
Optik
,
127
(
19
), pp.
7852
7864
.10.1016/j.ijleo.2016.05.139
22.
Almatroud Othman
,
A.
,
Noorani
,
M. S. M.
, and
Mossa Al-Sawalha
,
M.
,
2017
, “
Function Projective Dual Synchronization of Chaotic Systems With Uncertain Parameters
,”
Nonlinear Dyn. Syst. Theory
,
17
, pp.
193
204
.
23.
Othman
,
A. A.
,
Noorani
,
M. S. M.
, and
Al-Sawalha
,
M. M.
,
2017
, “
Function Projective Dual Synchronization With Uncertain Parameters of Hyperchaotic Systems
,”
Int. J. Syst. Dyn. Appl.
,
6
(
4
), pp.
1
16
.10.4018/IJSDA.2017100101
24.
Xiao
,
J.
,
Ma
,
Z.
, and
Yang
,
Y.
,
2013
, “
Dual Synchronization of Fractional-Order Chaotic Systems Via a Linear Controller
,”
Sci. World J.
, 2013, p.
159194
.
25.
Singh
,
A. K.
,
Yadav
,
V. K.
, and
Das
,
S.
,
2017
, “
Dual Combination Synchronization of the Fractional Order Complex Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
, p.
011017
.10.1115/1.4034433
26.
Yadav
,
V. K.
,
Srikanth
,
N.
, and
Das
,
S.
,
2016
, “
Dual Function Projective Synchronization of Fractional Order Complex Chaotic Systems
,”
Optik
,
127
(
22
), pp.
10527
10538
.10.1016/j.ijleo.2016.08.026
27.
Yadav
,
V. K.
,
Kumar
,
R.
,
Leung
,
A. Y. T.
, and
Das
,
S.
,
2019
, “
Dual Phase and Dual Anti-Phase Synchronization of Fractional Order Chaotic Systems in Real and Complex Variables With Uncertainties
,”
Chin. J. Phys.
,
57
, pp.
282
308
.10.1016/j.cjph.2018.12.001
28.
Zhang
,
Q.
,
Xiao
,
J.
,
Zhang
,
X. Q.
, and
Cao
,
D. Y.
,
2017
, “
Dual Projective Synchronization Between Integer-Order and Fractional-Order Chaotic Systems
,”
Optik
,
141
, pp.
90
98
.10.1016/j.ijleo.2017.05.059
29.
Grigorenko
,
I.
, and
Grigorenko
,
E.
,
2003
, “
Chaotic Dynamics of the Fractional Lorenz System
,”
Phys. Rev. Lett.
,
91
(
3
), p.
034101
.10.1103/PhysRevLett.91.034101
30.
Li
,
C.
, and
Chen
,
G.
,
2004
, “
Chaos in the Fractional Order Chen System and Its Control, Chaos
,”
Solitons Fractals
,
22
(
3
), pp.
549
554
.10.1016/j.chaos.2004.02.035
31.
He
,
J. M.
, and
Chen
,
F. Q.
,
2017
, “
A New Fractional Order Hyperchaotic Rabinovich System and Its Dynamical Behaviors
,”
Int. J. Non-Linear Mech.
,
95
, pp.
73
81
.10.1016/j.ijnonlinmec.2017.05.013
32.
He
,
J. M.
, and
Chen
,
F. Q.
,
2018
, “
Dynamical Analysis of a New Fractional-Order Rabinovich System and Its Fractional Matrix Projective Synchronization
,”
Chin. J. Phys.
,
56
(
5
), pp.
2627
2637
.10.1016/j.cjph.2018.09.014
33.
Lu
,
J. G.
,
2005
, “
Chaotic Dynamics and Synchronization of Fractional Order Arneodo's Systems, Chaos
,”
Solitons Fractals
,
26
(
4
), pp.
1125
1133
.10.1016/j.chaos.2005.02.023
You do not currently have access to this content.