Abstract

In robotics, simulation has the potential to reduce design time and costs, and lead to a more robust engineered solution and a safer development process. However, the use of simulators is predicated on the availability of good models. This contribution is concerned with improving the quality of these models via calibration, which is cast herein in a Bayesian framework. First, we discuss the Bayesian machinery involved in model calibration. Then, we demonstrate it in one example: calibration of a vehicle dynamics model that has low degree-of-freedom (DOF) count and can be used for state estimation, model predictive control, or path planning. A high fidelity simulator is used to emulate the “experiments” and generate the data for the calibration. The merit of this work is not tied to a new Bayesian methodology for calibration, but to the demonstration of how the Bayesian machinery can establish connections among models in computational dynamics, even when the data in use is noisy. The software used to generate the results reported herein is available in a public repository for unfettered use and distribution.

References

1.
Choi
,
H.
,
Crump
,
C.
,
Duriez
,
C.
,
Elmquist
,
A.
,
Hager
,
G.
,
Han
,
D.
,
Hearl
,
F.
, et al.,
2021
, “
On the Use of Simulation in Robotics: Opportunities, Challenges, and Suggestions for Moving Forward
,”
Proc. Natl. Acad. Sci. USA
,
118
(
1
), p. e1907856118.10.1073/pnas.1907856118
2.
Elmquist
,
A.
,
Young
,
A.
,
Mahajan
,
I.
,
Fahey
,
K.
,
Dashora
,
A.
,
Ashokkumar
,
S.
,
Caldararu
,
S.
, et al.,
2022
, “
A Software Toolkit and Hardware Platform for Investigating and Comparing Robot Autonomy Algorithms in Simulation and Reality
,” Preprint arXiv:2206.06537.
3.
Abarbanel
,
H. D. I.
,
Creveling
,
D. R.
,
Farsian
,
R.
, and
Kostuk
,
M.
,
2009
, “
Dynamical State and Parameter Estimation
,”
SIAM J. Appl. Dyn. Syst.
,
8
(
4
), pp.
1341
1381
.10.1137/090749761
4.
Uchida
,
T.
,
Vyasarayani
,
C.
,
Smart
,
M.
, and
McPhee
,
J.
,
2014
, “
Parameter Identification for Multibody Systems Expressed in Differential-Algebraic Form
,”
Multibody Syst. Dyn.
,
31
, pp.
393
403
.10.1007/s11044-013-9390-7
5.
Zhu
,
Y.
,
Dopico
,
D.
,
Sandu
,
C.
, and
Sandu
,
A.
, 05
2015
, “
Dynamic Response Optimization of Complex Multibody Systems in a Penalty Formulation Using Adjoint Sensitivity
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031009
.10.1115/1.4029601
6.
Nada
,
A. A.
,
2021
, “
Simplified Procedure of Sensitivity-Based Parameter Estimation of Multibody Systems With Experimental Validation
,”
IFAC-PapersOnLine
,
54
(
14
), pp.
84
89
.10.1016/j.ifacol.2021.10.333
7.
Shehata
,
M.
,
Elshami
,
M.
,
Bai
,
Q.
, and
Zhao
,
X.
,
2021
, “
Parameter Estimation for Multibody System Dynamic Model of Delta Robot From Experimental Data
,”
IFAC-PapersOnLine
,
54
(
14
), pp.
72
77
.10.1016/j.ifacol.2021.10.331
8.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
9.
Andrieu
,
C.
,
De Freitas
,
N.
,
Doucet
,
A.
, and
Jordan
,
M. I.
,
2003
, “
An Introduction to MCMC for Machine Learning
,”
Mach. Learning
,
50
(
1
), pp.
5
43
.10.1023/A:1020281327116
10.
Neal
,
R.
,
2011
, “
MCMC Using Hamiltonian Dynamics
,”
Handbook of Markov Chain Monte Carlo
,
S.
Brooks
,
A.
Gelman
,
G.
Jones
, and
X.-L.
Meng
, eds.,
Chapman and Hall/CRC
, Boca Raton, FL.
11.
Foreman-Mackey
,
D.
,
Hogg
,
D. W.
,
Lang
,
D.
, and
Goodman
,
J.
,
2013
, “
Emcee: The MCMC Hammer
,”
Publ. Astron. Soc. Pacific
,
125
(
925
), p.
306
.10.1086/670067
12.
Doucet
,
A.
,
Freitas
,
N. D.
, and
Gordon
,
N.
,
2001
, “
An Introduction to Sequential Monte Carlo Methods
,”
Sequential Monte Carlo Methods in Practice
,
Springer
, Cham, Swizerland, pp.
3
14
.
13.
Del Moral
,
P.
,
Doucet
,
A.
, and
Jasra
,
A.
,
2006
, “
Sequential Monte Carlo Samplers
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodology)
,
68
(
3
), pp.
411
436
.10.1111/j.1467-9868.2006.00553.x
14.
Neal
,
R. M.
,
2001
, “
Annealed Importance Sampling
,”
Stat. Comput.
,
11
(
2
), pp.
125
139
.10.1023/A:1008923215028
15.
Salvatier
,
J.
,
Wiecki
,
T. V.
, and
Fonnesbeck
,
C.
,
2016
, “
Probabilistic Programming in Python Using PyMC3
,”
PeerJ Comput. Sci.
,
2
, p.
e55
.10.7717/peerj-cs.55
16.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Fleischmann
,
J.
,
Taylor
,
M.
,
Sugiyama
,
H.
, and
Negrut
,
D.
,
2016
, “
Chrono: An Open Source Multi-Physics Dynamics Engine
,”
High Performance Computing in Science and Engineering—Lecture Notes in Computer Science
,
T.
Kozubek
, ed.,
Springer International Publishing
, pp.
19
49
.
17.
Serban
,
R.
,
Taylor
,
M.
,
Negrut
,
D.
, and
Tasora
,
A.
,
2019
, “
Chrono::Vehicle Template-Based Ground Vehicle Modeling and Simulation
,”
Intl. J. Veh. Perform.
,
5
(
1
), pp.
18
39
.10.1504/IJVP.2019.097096
18.
Kumar
,
R.
,
Carroll
,
C.
,
Hartikainen
,
A.
, and
Martin
,
O.
,
2019
, “
ArviZ: A Unified Library for Exploratory Analysis of Bayesian Models in Python
,”
J. Open Source Software
,
4
(
33
), p.
1143
.10.21105/joss.01143
19.
Unjhawala
,
H.
,
Zhang
,
R.
,
Hu
,
W.
,
Wu
,
J.
,
Serban
,
R.
,
Negrut
,
D.
,
2022
, “
Bayesian Calibration Models and Scripts
,”
Simulation-Based Engineering Lab, University of Wisconsin-Madison
, accessed Mar. 8, 2023, https://github.com/uwsbel/public-metadata/tree/master/2022/calibrationBayesianExamples
20.
Shim
,
T.
, and
Ghike
,
C.
,
2007
, “
Understanding the Limitations of Different Vehicle Models for Roll Dynamics Studies
,”
Veh. System Dynamics
,
45
(
3
), pp.
191
216
.10.1080/00423110600882449
21.
Chen
,
S.
,
Xiong
,
G.
,
Chen
,
H.
, and
Negrut
,
D.
,
2020
, “
MPC-Based Path Tracking With PID Speed Control for High-Speed Autonomous Vehicles Considering Time-Optimal Travel
,”
J. Central South Univ.
,
27
(
12
), pp.
3702
3720
.10.1007/s11771-020-4561-1
22.
Chen
,
S.
, and
Negrut
,
D.
,
2019
, “
A MATLAB® Implementation of a Set of Three Vehicle Dynamics Models
,”
Simulation-Based Engineering Laboratory, University of Wisconsin-Madison
, Madison, WI, Report No. TR-2019-04.https://sbel.wisc.edu/wpcontent/uploads/sites/569/2019/10/TR-2019-04.pdf
23.
Taylor
,
M.
,
2015
, “
Implementation and Validation of the Fiala Tire Model in Chrono
,”
University of Wisconsin–Madison
, Madison, WI, Report No. TR-2015-13.http://sbel.wisc.edu/documents/T R-2016-06.pdf
24.
He
,
J.
,
Crolla
,
D. A.
,
Levesley
,
M. C.
, and
Manning
,
W. J.
,
2004
, “
Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability
,”
SAE Trans.
,
113
, pp.
638
647
.10.4271/2004-01-1071
25.
Miles
,
P.
,
Hays
,
M.
,
Smith
,
R.
, and
Oates
,
W.
,
2015
, “
Bayesian Uncertainty Analysis of Finite Deformation Viscoelasticity
,”
Mech. Mater.
,
91
, pp.
35
49
.10.1016/j.mechmat.2015.07.002
26.
Miles
,
P. R.
, and
Smith
,
R. C.
,
2019
, “
Parameter Estimation Using the Python Package Pymcmcstat
,”
Proceedings of the 18th Python in Science Conference
, Austin, TX, July 8–14 pp.
93
100
.https://conference.scipy.org/proceedings/scipy2019/pdfs/paul_miles.pdf
27.
Gelman
,
A.
, and
Rubin
,
D. B.
,
1992
, “
Inference From Iterative Simulation Using Multiple Sequences
,”
Stat. Sci.
,
7
(
4
), pp.
457
472
.10.1214/ss/1177011136
28.
Vehtari
,
A.
,
Gelman
,
A.
,
Simpson
,
D.
,
Carpenter
,
B.
, and
Bürkner
,
P.-C.
,
2021
, “
Rank-Normalization, Folding, and Localization: An Improved R̂ for Assessing Convergence of MCMC (With Discussion)
,”
Bayesian Anal.
,
16
(
2
), pp.
667
718
.
29.
Robert
,
C. P.
,
Casella
,
G.
, and
Casella
,
G.
,
1999
,
Monte Carlo Statistical Methods
,
2
,
Springer
, New York.
30.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
1995
,
Bayesian Data Analysis
,
Chapman and Hall/CRC
, Boca Raton, FL.
31.
Flegal
,
J. M.
,
Haran
,
M.
, and
Jones
,
G. L.
,
2008
, “
Markov Chain Monte Carlo: Can we Trust the Third Significant Figure?
,”
Stat. Sci.
,
23
(
2
), pp.
250
260
.10.1214/08-STS257
32.
Anitescu
,
M.
, and
Tasora
,
A.
,
2010
, “
An Iterative Approach for Cone Complementarity Problems for Nonsmooth Dynamics
,”
Comput. Optim. Appl.
,
47
(
2
), pp.
207
235
.10.1007/s10589-008-9223-4
33.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
,
2006
,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
, Vol.
31
,
Springer Science & Business Media
, Berlin, Germany.
34.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
(
1
), pp.
97
109
.10.1093/biomet/57.1.97
35.
Hoffman
,
M. D.
, and
Gelman
,
A.
,
2014
, “
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
,”
J. Mach. Learn. Res.
,
15
(
47
), pp.
1593
1623
.10.48550/arXiv.1111.4246
36.
Betancourt
,
M.
,
2017
, “
A Conceptual Introduction to Hamiltonian Monte Carlo
,” preprint
arXiv:1701.02434
.10.48550/arXiv.1701.02434
37.
Hu
,
W.
,
Zhou
,
Z.
,
Chandler
,
S.
,
Apostolopoulos
,
D.
,
Kamrin
,
K.
,
Serban
,
R.
, and
Negrut
,
D.
,
2022
, “
Traction Control Design for Off-Road Mobility Using an SPH-DAE co-Simulation Framework
,”
Multibody Syst. Dyn.
,
55
, pp.
165
188
.10.1007/s11044-022-09815-2
38.
Tasora
,
A.
,
Mangoni
,
D.
,
Negrut
,
D.
,
Serban
,
R.
, and
Jayakumar
,
P.
,
2019
, “
Deformable Soil With Adaptive Level of Detail for Tracked and Wheeled Vehicles
,”
Int. J. Veh. Performance
,
5
(
1
), pp.
60
76
.10.1504/IJVP.2019.097098
39.
Serban
,
R.
,
Taves
,
J.
, and
Zhou
,
Z.
,
2022
, “
Real-Time Simulation of Ground Vehicles on Deformable Terrain
,”
ASME
Paper No.
DETC2022-89470.10.1115/DETC2022-89470
40.
Fang
,
L.
,
Zhang
,
R.
,
Vanden Heuvel
,
C.
,
Serban
,
R.
, and
Negrut
,
D.
,
2021
, “
Chrono::GPU: An Open-Source Simulation Package for Granular Dynamics Using the Discrete Element Method
,”
Processes
,
9
(
10
), p.
1813
.10.3390/pr9101813
You do not currently have access to this content.