Abstract

The performance of physics simulation of multibody systems with contact can be enhanced by viewing the system as being composed of subsystems of bodies, and solving the dynamics of these subsystems in parallel. This approach to partition a system into subsystems, known as substructuring, is often based on topological information, such as the connectivity of a body in the system. However, substructuring based on topology may generate a potentially large number of equivalent decompositions, especially in highly symmetric systems, thus requiring a way to choose one partition over another. We propose that augmenting a topology-based partitioning scheme with dynamical information about the interactions between bodies may provide speedups by including temporal information about the constraint relationships between bodies. The simulation of multibody systems with contact typically exhibits nonstationary and multiscale interactions, which suggests a subsystem can be defined as a collection of bodies which have complex interactions with each other. We define complexity by introducing a novel metric based on the spread of time scales from a wavelet analysis of constraints between bodies. We show that for systems where purely topological information about the interaction between bodies is redundant, including dynamical information, not only removes redundancy but also can achieve significant computational speedups. Our results highlight the potential of using dynamical information to look at large-scale structures in multibody simulations.

References

1.
Zhou
,
P.
,
Ren
,
H.
, and
Masarati
,
P.
,
2022
, “
A Relaxed Coupling Method for Algebraically Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
55
(
1–2
), pp.
57
81
.10.1007/s11044-022-09825-0
2.
Kraft
,
J.
,
2021
, “
Efficient Parallelization of Multibody Systems Incorporating Co-Simulation Techniques
,” Ph.D. dissertation, Technische Universität Darmstadt, Darmstadt, Germany.
3.
Holzinger
,
F.
,
Schuch
,
K.
,
Benedikt
,
M.
, and
Watzenig
,
D.
,
2021
, “
Parallel Fast: An Efficient Coupling Approach for Co-Simulation With Different Coupling Step Sizes
,”
Proceedings of 14th Modelica Conference 2021
,
Linköping
,
Sweden
, Sept. 20–24, pp.
649
658
.
4.
Chen
,
W.
,
Ran
,
S.
,
Wu
,
C.
, and
Jacobson
,
B.
,
2021
, “
Explicit Parallel Co-Simulation Approach: Analysis and Improved Coupling Method Based on H-Infinity Synthesis
,”
Multibody Syst. Dyn.
,
52
(
3
), pp.
255
279
.10.1007/s11044-021-09785-x
5.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When, and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
.10.1115/1.4027313
6.
Negrut
,
D.
,
Tasora
,
A.
,
Mazhar
,
H.
,
Heyn
,
T.
, and
Hahn
,
P.
,
2012
, “
Leveraging Parallel Computing in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
27
(
1
), pp.
95
117
.10.1007/s11044-011-9262-y
7.
Tasora
,
A.
,
Negrut
,
D.
, and
Anitescu
,
M.
,
2011
, “
GPU-Based Parallel Computing for the Simulation of Complex Multibody Systems With Unilateral and Bilateral Constraints: An Overview
,”
Multibody Dynamics
,
Springer
,
Dordrecht, Netherlands
, pp.
283
307
.
8.
Allen
,
M. S.
,
Rixen
,
D.
,
Van der Seijs
,
M.
,
Tiso
,
P.
,
Abrahamsson
,
T.
, and
Mayes
,
R. L.
,
2020
,
Substructuring in Engineering Dynamics
,
Springer
,
Cham, Switzerland
.
9.
Kurc
,
O.
,
2008
,
Parallel Computing in Structural Engineering: A Substructure Based Approach
,
VDM Verlag Dr. Müller
,
Riga, Latvia
.
10.
Peiret
,
A.
,
Andrews
,
S.
,
Kövecses
,
J.
,
Kry
,
P. G.
, and
Teichmann
,
M.
,
2019
, “
Schur Complement-Based Substructuring of Stiff Multibody Systems With Contact
,”
ACM Trans. Graphics (TOG)
,
38
(
5
), pp.
1
17
.10.1145/3355621
11.
Davis
,
T. A.
,
Gilbert
,
J. R.
,
Larimore
,
S. I.
, and
Ng
,
E. G.
,
2004
, “
A Column Approximate Minimum Degree Ordering Algorithm
,”
ACM Trans. Math. Software (TOMS)
,
30
(
3
), pp.
353
376
.10.1145/1024074.1024079
12.
Kernighan
,
B. W.
, and
Lin
,
S.
,
1970
, “
An Efficient Heuristic Procedure for Partitioning Graphs
,”
Bell Syst. Tech. J.
,
49
(
2
), pp.
291
307
.10.1002/j.1538-7305.1970.tb01770.x
13.
Cuthill
,
E.
, and
McKee
,
J.
,
1969
, “
Reducing the Bandwidth of Sparse Symmetric Matrices
,” Proceedings of
the 1969 24th National Conference
, Aug., pp.
157
172
.
14.
Stoer
,
M.
, and
Wagner
,
F.
,
1997
, “
A Simple Min-Cut Algorithm
,”
J. ACM
,
44
(
4
), pp.
585
591
.10.1145/263867.263872
15.
Buluç
,
A. I.
,
Meyerhenke
,
H.
,
Safro
,
I.
,
Sanders
,
P.
, and
Schulz
,
C.
,
2016
, “
Recent Advances in Graph Partitioning
,”
Algorithm Engineering
,
Springer
,
Cham, Switzerland
, pp.
117
158
.
16.
Andreev
,
K.
, and
Racke
,
H.
,
2006
, “
Balanced Graph Partitioning
,”
Theory Comput. Syst.
,
39
(
6
), pp.
929
939
.10.1007/s00224-006-1350-7
17.
Fiduccia
,
C. M.
, and
Mattheyses
,
R. M.
,
1982
, “
A Linear-Time Heuristic for Improving Network Partitions
,”
19th Design Automation Conference
,
Las Vegas, NV
, June 14–16, pp.
175
181
.
18.
Feige
,
U.
, and
Krauthgamer
,
R.
,
2002
, “
A Polylogarithmic Approximation of the Minimum Bisection
,”
SIAM J. Comput.
,
31
(
4
), pp.
1090
1118
.10.1137/S0097539701387660
19.
Feige
,
U.
,
Krauthgamer
,
R.
, and
Nissim
,
K.
,
2000
, “
Approximating the Minimum Bisection Size
,”
STOC‘00: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing
, Portland, OR, May 21–23, pp.
530
536
.https://dl.acm.org/doi/pdf/10.1145/335305.335370
20.
Karger
,
D. R.
,
1993
, “
Global Min-Cuts in RNC, and Other Ramifications of a Simple Min-Cut Algorithm
,”
SODA‘93: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms
, Austin, TX, Jan. 25–27, pp.
21
30
.https://dl.acm.org/doi/10.5555/313559.313605
21.
Spielman
,
D. A.
, and
Shang-Hua
,
T.
,
1996
, “
Spectral Partitioning Works: Planar Graphs and Finite Element Meshes
,”
Proceedings of 37th Conference on Foundations of Computer Science
,
Burlington, VT
, Oct. 14–16, pp.
96
105
.
22.
Fiedler
,
M.
,
1973
, “
Algebraic Connectivity of Graphs
,”
Czech. Math. J.
,
23
(
2
), pp.
298
305
.10.21136/CMJ.1973.101168
23.
Fiedler
,
M.
,
1975
, “
Eigenvectors of Acyclic Matrices
,”
Czech. Math. J.
,
25
(
4
), pp.
607
618
.10.21136/CMJ.1975.101356
24.
Fiedler
,
M.
,
1975
, “
A Property of Eigenvectors of Nonnegative Symmetric Matrices and Its Application to Graph Theory
,”
Czech. Math. J.
,
25
(
4
), pp.
619
633
.10.21136/CMJ.1975.101357
25.
Lang
,
K.
, and
Rao
,
S.
,
2004
, “
A Flow-Based Method for Improving the Expansion or Conductance of Graph Cuts
,”
International Conference on Integer Programming and Combinatorial Optimization
, New York, June 7–11, pp.
325
337
.
26.
Nascimento
,
M. C.
,
2014
, “
Community Detection in Networks Via a Spectral Heuristic Based on the Clustering Coefficient
,”
Discrete Appl. Math.
,
176
, pp.
89
99
.10.1016/j.dam.2013.09.017
27.
Hoory
,
S.
,
Linial
,
N.
, and
Wigderson
,
A.
,
2006
, “
Expander Graphs and Their Applications
,”
Bull. Am. Math. Soc.
,
43
(
4
), pp.
439
562
.10.1090/S0273-0979-06-01126-8
28.
Torres-Moreno
,
J.-L.
,
Blanco
,
J.-L.
,
López-Martínez
,
J.
, and
Giménez-Fernández
,
A.
,
2013
, “
A Comparison of Algorithms for Sparse Matrix Factoring and Variable Reordering Aimed at Real-Time Multibody Dynamic Simulation
,”
Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics
,
Catalonia, Spain
, July 1–4, p.
29
.
29.
Vecharynski
,
E.
,
Saad
,
Y.
, and
Sosonkina
,
M.
,
2014
, “
Graph Partitioning Using Matrix Values for Preconditioning Symmetric Positive Definite Systems
,”
SIAM J. Sci. Comput.
,
36
(
1
), pp.
A63
A87
.10.1137/120898760
30.
Pellegrini
,
F.
, and
Roman
,
J.
,
1996
, “
Scotch: A Software Package for Static Mapping by Dual Recursive Bipartitioning of Process and Architecture Graphs
,”
International Conference on High-Performance Computing and Networking
, Brussels, Belgium, Apr. 30, pp.
493
498
.
31.
Karypis
,
G.
, and
Kumar
,
V.
,
1997
, “
METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices
,” Technical Report No.
97-061
, Retrieved from the University of Minnesota Digital Conservancy.https://hdl.handle.net/11299/215346
32.
Çatalyürek
,
Ü. V.
, and
Aykanat
,
C.
,
2011
, “
PaToH (Partitioning Tool for Hypergraphs)
,”
Encyclopedia of Parallel Computing
,
Springer
,
Boston, MA
, pp.
1479
1487
.
33.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics—Part 1: Basic Algorithm
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
867
875
.10.1177/02783649922066619
34.
Lacoursière
,
C.
,
2006
, “
A Parallel Block Iterative Method for Interactive Contacting Rigid Multibody Simulations on Multicore PCs
,”
International Workshop on Applied Parallel Computing
, Umeå, Sweden, June 18–21, pp.
956
965
.10.5555/1775059.1775192
35.
Baraff
,
D.
, and
Witkin
,
A.
,
1997
, “
Partitioned Dynamics
,”
Carnegie-Mellon University
,
Pittsburgh, PA
, Technical Report No. CMU-RI-TR-97-33.
36.
Tonge
,
R.
,
Benevolenski
,
F.
, and
Voroshilov
,
A.
,
2012
, “
Mass Splitting for Jitter-Free Parallel Rigid Body Simulation
,”
ACM Trans. Graphics (TOG)
,
31
(
4
), pp.
1
8
.10.1145/2185520.2185601
37.
Tomcin
,
R.
,
Sibbing
,
D.
, and
Kobbelt
,
L.
,
2014
, “
Efficient Enforcement of Hard Articulation Constraints in the Presence of Closed Loops and Contacts
,”
Comput. Graphics Forum
,
33
(
2
), pp.
235
244
.10.1111/cgf.12322
38.
CM Labs Simulations,
2017
, “
Theory Guide: Vortex Software's Multibody Dynamics Engine
,”
CM Labs Simulations
,
Montréal, PQ
, accessed Sept. 2021, https://www.cm-labs.com/vortexstudiodocumentation/Vortex_User_Documentation/Content/Concepts/theoryguide.html
39.
Holme
,
P.
, and
Saramäki
,
J.
,
2012
, “
Temporal Networks
,”
Phys. Rep.
,
519
(
3
), pp.
97
125
.10.1016/j.physrep.2012.03.001
40.
Nason
,
G. P.
, and
von Sachs
,
R.
,
1999
, “
Wavelets in Time-Series Analysis
,”
Philos. Trans. R. Soc., A
,
357
(
1760
), pp.
2511
2526
.10.1098/rsta.1999.0445
41.
Rioul
,
O.
, and
Vetterli
,
M.
,
1991
, “
Wavelets and Signal Processing
,”
IEEE Signal Process. Mag.
,
8
(
4
), pp.
14
38
.10.1109/79.91217
42.
Flandrin
,
P.
, and
Abry
,
P.
,
1999
, “
Wavelets for Scaling Processes
,”
Fractals
,
Springer
,
London
, pp.
47
64
.
43.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
Bull. Am. Meteorol. Soc.
,
79
(
1
), pp.
61
78
.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
44.
Daubechies
,
I.
,
1992
,
Ten Lectures on Wavelets
,
Siam
,
Philadelphia, PA
.
45.
Wang
,
G.-J.
,
Xie
,
C.
, and
Chen
,
S.
,
2017
, “
Multiscale Correlation Networks Analysis of the U.S. Stock Market: A Wavelet Analysis
,”
J. Econ. Interact. Coord.
,
12
(
3
), pp.
561
594
.10.1007/s11403-016-0176-x
46.
Hramov
,
A. E.
,
Koronovskii
,
A. A.
,
Makarov
,
V. A.
,
Pavlov
,
A. N.
, and
Sitnikova
,
E.
,
2015
,
Wavelets in Neuroscience
,
Springer
,
Cham, Switzerland
.
47.
Van den Berg
,
J. C. (Ed.)
,
1999
,
Wavelets in Physics
Cambridge University Press
,
Cambridge, UK
, pp.
I
Iv
.
48.
Mallat
,
S.
,
1999
,
A Wavelet Tour of Signal Processing
,
Elsevier
,
Burlington, MA
.
49.
Kumar
,
P.
, and
Foufoula-Georgiou
,
E.
,
1994
, “
Wavelet Analysis in Geophysics: An Introduction
,”
Wavelets in Geophysics
, Vol.
4
,
Elsevier, Amsterdam
,
The Netherlands
, pp.
1
43
.
50.
Farge
,
M.
,
1992
, “
Wavelet Transforms and Their Applications to Turbulence
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
395
458
.10.1146/annurev.fl.24.010192.002143
You do not currently have access to this content.