Abstract

Usage of contact mechanics methodologies is a pervasive modeling requirement in dynamic simulations. While for some trivial problems, solutions taken from analytical geometry are available, use of a finite element framework is common to achieve formulation generality. This work explores two dynamic contact formulations: one based on the traditional node-to-segment (NTS) approach, and a variationally consistent segment-to-segment (STS) mortar formulation. The NTS formulation employed here enforces the constraints kinematically (i.e., the interpenetration is enforced to the solver tolerance), whereas the mortar approach uses Lagrange multipliers to enforce the contact constraints. Both approaches are implemented in the open-source finite element framework Multiphysics Object-Oriented Simulation Environment (MOOSE). The results highlight two relevant contact-interface-related dynamic phenomena in finite element simulations. First, stabilization of contact constraints is discussed, taking into account the evolution of the total energy in a benchmark problem. Second, the influence of finite element discretization on both of the aforementioned contact formulations is analyzed by exercising a large-deformation example with continuous relative sliding. Variationally consistent contact approaches such as the mortar formulation lead to improved energy preservation and avoid spurious excitation of the system's frequencies. This is especially relevant in settings where inertia and vibrations are of importance.

References

1.
Laursen
,
T. A.
,
2003
,
Computational Contact and Impact Mechanics
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
2.
Wriggers
,
P.
,
2006
,
Computational Contact Mechanics
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
3.
Wohlmuth
,
B. I.
,
2000
, “
A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier
,”
SIAM J. Numer. Anal.
,
38
(
3
), pp.
989
1012
.10.1137/S0036142999350929
4.
Wohlmuth
,
B.
,
2011
, “
Variationally Consistent Discretization Schemes and Numerical Algorithms for Contact Problems
,”
Acta Numerica
,
20
, pp.
569
734
.10.1017/S0962492911000079
5.
Popp
,
A.
, and
Wall
,
W.
,
2014
, “
Dual Mortar Methods for Computational Contact Mechanics–Overview and Recent Developments
,”
GAMM-Mitteilungen
,
37
(
1
), pp.
66
84
.10.1002/gamm.201410004
6.
Seitz
,
A.
,
Wall
,
W. A.
, and
Popp
,
A.
,
2019
, “
Nitsche's Method for Finite Deformation Thermomechanical Contact Problems
,”
Comput. Mech.
,
63
(
6
), pp.
1091
1110
.10.1007/s00466-018-1638-x
7.
Drouet
,
G.
, and
Hild
,
P.
,
2017
, “
An Accurate Local Average Contact Method for Nonmatching Meshes
,”
Numerische Mathematik
,
136
(
2
), pp.
467
502
.10.1007/s00211-016-0846-6
8.
Abbas
,
M.
,
Drouet
,
G.
, and
Hild
,
P.
,
2018
, “
The Local Average Contact (Lac) Method
,”
Comput. Methods Appl. Mech. Eng.
,
339
, pp.
488
513
.10.1016/j.cma.2018.05.013
9.
Yang
,
B.
,
Laursen
,
T. A.
, and
Meng
,
X.
,
2005
, “
Two Dimensional Mortar Contact Methods for Large Deformation Frictional Sliding
,”
Int. J. Numer. Methods Eng.
,
62
(
9
), pp.
1183
1225
.10.1002/nme.1222
10.
Puso
,
M. A.
,
Laursen
,
T.
, and
Solberg
,
J.
,
2008
, “
A Segment-to-Segment Mortar Contact Method for Quadratic Elements and Large Deformations
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
6–8
), pp.
555
566
.10.1016/j.cma.2007.08.009
11.
Papadopoulos
,
P.
, and
Taylor
,
R. L.
,
1992
, “
A Mixed Formulation for the Finite Element Solution of Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
3
), pp.
373
389
.10.1016/0045-7825(92)90061-N
12.
Seitz
,
A.
,
Farah
,
P.
,
Kremheller
,
J.
,
Wohlmuth
,
B. I.
,
Wall
,
W. A.
, and
Popp
,
A.
,
2016
, “
Isogeometric Dual Mortar Methods for Computational Contact Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
301
, pp.
259
280
.10.1016/j.cma.2015.12.018
13.
Shabana
,
A.
,
2020
,
Dynamics of Multibody Systems
,
Cambridge University Press
, Cambridge, UK.
14.
Permann
,
C. J.
,
Gaston
,
D. R.
,
Andrš
,
D.
,
Carlsen
,
R. W.
,
Kong
,
F.
,
Lindsay
,
A. D.
,
Miller
,
J. M.
,
Peterson
,
J. W.
,
Slaughter
,
A. E.
,
Stogner
,
R. H.
, and
Martineau
,
R. C.
,
2020
, “
MOOSE: Enabling Massively Parallel Multiphysics Simulation
,”
SoftwareX
,
11
, p.
100430
.10.1016/j.softx.2020.100430
15.
Gitterle
,
M.
,
Popp
,
A.
,
Gee
,
M. W.
, and
Wall
,
W. A.
,
2010
, “
Finite Deformation Frictional Mortar Contact Using a Semi-Smooth Newton Method With Consistent Linearization
,”
Int. J. Numer. Methods Eng.
,
84
(
5
), pp.
543
571
.10.1002/nme.2907
16.
Tal
,
Y.
, and
Hager
,
B. H.
,
2018
, “
Dynamic Mortar Finite Element Method for Modeling of Shear Rupture on Frictional Rough Surfaces
,”
Comput. Mech.
,
61
(
6
), pp.
699
716
.10.1007/s00466-017-1475-3
17.
Heinstein
,
M. W.
, and
Laursen
,
T. A.
,
1999
, “
An Algorithm for the Matrix-Free Solution of Quasistatic Frictional Contact Problems
,”
Int. J. Numer. Methods Eng.
,
44
(
9
), pp.
1205
1226
.10.1002/(SICI)1097-0207(19990330)44:9<1205::AID-NME550>3.0.CO;2-0
18.
Puso
,
M.
, and
Solberg
,
J.
,
2020
, “
A Dual Pass Mortar Approach for Unbiased Constraints and Self-Contact
,”
Comput. Methods Appl. Mech. Eng.
,
367
, p.
113092
.10.1016/j.cma.2020.113092
19.
Rashid
,
M.
,
1993
, “
Incremental Kinematics for Finite Element Applications
,”
Int. J. Numer. Methods Eng.
,
36
(
23
), pp.
3937
3956
.10.1002/nme.1620362302
20.
Carvalho
,
R. P.
,
Carneiro
,
A.
,
Pires
,
F.
, and
Popp
,
A.
,
2022
, “
An Efficient Algorithm for Rigid/Deformable Contact Interaction Based on the Dual Mortar Method
,”
Comput. Mech.
, epub, pp.
1
25
.10.1007/s00466-022-02226-2
21.
Knoll
,
D.
, and
Keyes
,
D.
,
2004
, “
Jacobian-Free Newton–Krylov Methods: A Survey of Approaches and Applications
,”
J. Comput. Phys.
,
193
(
2
), pp.
357
397
.10.1016/j.jcp.2003.08.010
22.
Hüeber
,
S.
,
2008
, “
Discretization Techniques and Efficient Algorithms for Contact Problems
,” Ph.D. thesis,
University of Stuttgart
,
Stuttgart, Germany
.
23.
Popp
,
A.
,
2012
, “
Mortar methods for computational contact mechanics and general interface problems
,” Ph.D. thesis,
Technische Universität München
,
Munich, Germany
, p.
6
.
24.
Hüeber
,
S.
,
Stadler
,
G.
, and
Wohlmuth
,
B. I.
,
2008
, “
A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems With Coulomb Friction
,”
SIAM J. Sci. Comput.
,
30
(
2
), pp.
572
596
.10.1137/060671061
25.
Hintermüller
,
M.
,
Ito
,
K.
, and
Kunisch
,
K.
,
2002
, “
The Primal-Dual Active Set Strategy as a Semismooth Newton Method
,”
SIAM J. Optim.
,
13
(
3
), pp.
865
888
.10.1137/S1052623401383558
26.
Lindsay
,
A.
,
Stogner
,
R.
,
Gaston
,
D.
,
Schwen
,
D.
,
Matthews
,
C.
,
Jiang
,
W.
,
Aagesen
,
L. K.
,
Carlsen
,
R.
,
Kong
,
F.
,
Slaughter
,
A.
,
Permann
,
C.
, and
Martineau
,
R.
,
2021
, “
Automatic Differentiation in MetaPhysicL and Its Applications in MOOSE
,”
Nucl. Technol.
,
207
(
7
), pp.
905
922
.10.1080/00295450.2020.1838877
27.
Laursen
,
T.
, and
Love
,
G.
,
2002
, “
Improved Implicit Integrators for Transient Impact Problems—Geometric Admissibility Within the Conserving Framework
,”
Int. J. Numer. Methods Eng.
,
53
(
2
), pp.
245
274
.10.1002/nme.264
28.
Yushu
,
D.
,
Martin Recuero
,
A.
,
Schwen
,
D.
,
Lindsay
,
A. D.
, and
Spencer
,
B. W.
,
2021
, “
M3 Milestone: Advanced Contact 2021
,”
Idaho National Lab. (INL)
,
Idaho Falls, ID
, Report No. INL/EXT-21-62750-Rev001.
You do not currently have access to this content.