Abstract

In this work, stabilized explicit integrators for local parametrization are introduced to calculate the dynamics of constrained multi-rigid-body systems, including those based on the orthogonal Runge–Kutta–Chebyshev (RKC) method and the extrapolated stabilized explicit Runge–Kutta (ESERK) method. Both of these methods have large stability regions at the negative real axis, and this property makes them suitable to settle the introduction of the stabilization parameter for a constraint equation. The local vectorial rotation parameters are adopted to describe rotations in each rigid body, and a stabilization technique is developed to transform the differential-algebraic equations (DAE) into a set of first-order ordinary differential equations (ODEs) that can be computed efficiently. Several benchmarks are calculated and the results are compared to those by the generalized-α integrator and ADAMS models, verifying their effectiveness in nonstiff problems.

References

1.
Bauchau
,
O. A.
, and
Trainelli
,
L.
,
2003
, “
The Vectorial Parameterization of Rotation
,”
Nonlinear Dyn.
,
32
(
1
), pp.
71
92
.10.1023/A:1024265401576
2.
Robinson
,
A. C.
,
1958
, “
On the Use of Quaternions in Simulation of Rigid-Body Motion
,” WADC, OH, Report No. 58–17.
3.
Verbin
,
D.
,
Lappas
,
V.
, and
Ben-Asher
,
J. Z.
,
2011
, “
Time-Efficient Angular Steering Laws for Rigid Satellite
,”
J. Guid. Control Dyn.
,
34
(
3
), pp.
878
892
.10.2514/1.48154
4.
Pittelkau
,
M. E.
,
2003
, “
Rotation Vector in Attitude Estimation
,”
J. Guid. Control Dyn.
,
26
(
6
), pp.
855
860
.10.2514/2.6929
5.
Stuelpnagel
,
J.
,
1964
, “
On the Parametrization of the Three-Dimensional Rotation Group
,”
SIAM Rev.
,
6
(
4
), pp.
422
430
.10.1137/1006093
6.
Singla
,
P.
,
Mortari
,
D.
, and
Junkins
,
J. L.
,
2005
, “
How to Avoid Singularity When Using Euler Angles?
,”
Adv. Astronaut. Sci.
,
119
(
1
), pp.
1409
1426
.https://www.researchgate.net/publication/289724871
7.
Mortari
,
D.
,
Angelucci
,
M.
, and
Markley
,
F. L.
,
2000
, “
Singularity and Attitude Estimation
,”
Adv. Astronaut. Sci.
,
105
(
1
), pp.
479
496
.https://www.researchgate.net/publication/254199740
8.
Cardona
,
A.
, and
Geradin
,
M.
,
1989
, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
,
33
(
3
), pp.
801
820
.10.1016/0045-7949(89)90255-1
9.
Geradin
,
M.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley, New York.
10.
Brüls
,
O.
, and
Cardona
,
A.
,
2010
, “
On the Use of Lie Group Time Integrators in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031002
.10.1115/1.4001370
11.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
(
1
), pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
12.
Demoures
,
F.
,
Gay-Balmaz
,
F.
,
Leyendecker
,
S.
,
Ober-Blöbaum
,
S.
,
Ratiu
,
T. S.
, and
Weinand
,
Y.
,
2015
, “
Discrete Variational Lie Group Formulation of Geometrically Exact Beam Dynamics
,”
Numer. Math.
,
130
(
1
), pp.
73
123
.10.1007/s00211-014-0659-4
13.
Ding
,
J.
, and
Pan
,
Z.
,
2018
, “
The Lie Group Euler Methods of Multibody System Dynamics With Holonomic Constraints
,”
Adv. Mech. Eng.
,
10
(
4
), pp.
1
10
.10.1177/1687814018764154
14.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.10.1007/s11044-014-9439-2
15.
Bottasso
,
C. L.
, and
Borri
,
M.
,
1998
, “
Integrating Finite Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
164
(
3–4
), pp.
307
331
.10.1016/S0045-7825(98)00031-0
16.
Munthe-Kaas
,
H.
,
1998
, “
Runge-Kutta Methods on Lie Groups
,”
BIT
,
38
(
1
), pp.
92
111
.10.1007/BF02510919
17.
Holzinger
,
S.
, and
Gerstmayr
,
J.
,
2021
, “
Time Integration of Rigid Bodies Modelled With Three Rotation Parameters
,”
Multibody Syst. Dyn.
,
53
(
4
), pp.
345
378
.10.1007/s11044-021-09778-w
18.
Brasey
,
V.
, and
Hairer
,
E.
,
1993
, “
Symmetrized Half-Explicit Methods for Constrained Mechanical Systems
,”
Appl. Numer. Math.
, 13(1), pp.
23
31
.10.1016/0168-9274(93)90128-E
19.
Arnold
,
M.
,
1998
, “
Half-Explicit Runge-Kutta Methods With Explicit Stages for Differential-Algebraic Systems of Index 2
,”
BIT
,
38
(
3
), pp.
415
438
.10.1007/BF02510252
20.
Linh
,
V. H.
, and
Truong
,
N. D.
,
2020
, “
On Convergence of Continuous Half-Explicit Runge-Kutta Methods for a Class of Delay Differential-Algebraic Equations
,”
Numer. Algorithms
,
85
(
1
), pp.
277
203
.10.1007/s11075-019-00813-8
21.
Prentice
,
J. S.
,
2011
, “
Stepsize Selection in Explicit Runge-Kutta Methods for Moderately Stiff Problems
,”
Appl. Math.
,
02
(
6
), pp.
711
717
.10.4236/am.2011.26094
22.
Stasio
,
J. D.
,
Dureisseix
,
D.
,
Georges
,
G.
,
Gravouil
,
A.
, and
Homolle
,
T.
,
2021
, “
An Explicit Time-Integrator With Singular Mass for Non-Smooth Dynamics
,”
Comput. Mech.
,
68
(
1
), pp.
97
112
.10.1007/s00466-021-02021-5
23.
Bae
,
D. S.
,
Lee
,
J. K.
,
Cho
,
H. J.
, and
Yae
,
H.
,
2000
, “
An Explicit Integration Method for Realtime Simulation of Multibody Vehicle Models
,”
Comput. Methods Appl. Mech. Eng.
,
187
(
1–2
), pp.
337
350
.10.1016/S0045-7825(99)00138-3
24.
Naets
,
F.
,
Tamarozzi
,
T.
,
Heirman
,
G.
, and
Desmet
,
W.
,
2012
, “
Real-Time Flexible Multibody Simulation With Global Modal Parameterization
,”
Multibody Syst. Dyn.
,
27
(
3
), pp.
267
284
.10.1007/s11044-011-9298-z
25.
Verwer
,
J. G.
,
Hundsdorfer
,
W. H.
, and
Sommeijer
,
B. P.
,
1990
, “
Convergence Properties of the Runge-Kutta-Chebyshev Method
,”
Numer. Math.
,
57
(
1
), pp.
157
178
.10.1007/BF01386405
26.
Martín-Vaquero
,
J.
, and
Kleefeld
,
B.
,
2016
, “
Extrapolated Stabilized Explicit Runge-Kutta Methods
,”
J. Comput. Phys.
,
326
(
1
), pp.
141
155
.10.1016/j.jcp.2016.08.042
27.
Medovikov
,
A. A.
,
1998
, “
High Order Explicit Methods for Parabolic Equations
,”
BIT
,
38
(
2
), pp.
372
390
.10.1007/BF02512373
28.
Abdulle
,
A.
, and
Medovikov
,
A. A.
,
2001
, “
Second Order Chebyshev Methods Based on Orthogonal Polynomials
,”
Numer. Math.
,
90
(
1
), pp.
1
18
.10.1007/s002110100292
29.
Abdulle
,
A.
,
2002
, “
Fourth Order Chebyshev Methods With Recurrence Relation
,”
SIAM J. Sci. Comput.
,
23
(
6
), pp.
2041
2054
.10.1137/S1064827500379549
30.
Ren
,
H.
, and
Zhou
,
P.
,
2020
, “
A Fast Explicit Integrator for Numerical Simulation of Multibody System Dynamics
,”
Multibody Dynamics 2019
,
A.
Kecskeméthy
and
F.
Geu Flores
, eds.,
Springer
,
Cham
, Switzerland, pp.
348
355
.
31.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
, 3rd ed.,
Cambridge University Press
,
Cambridge, UK
.
32.
Bahar
,
L. Y.
,
1970
, “
Direct Determination of Finite Rotation Operators
,”
J. Franklin Inst.
,
289
(
5
), pp.
401
404
.10.1016/0016-0032(70)90208-5
33.
Argyris
,
J.
,
1982
, “
An Excursion Into Large Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
85
155
.10.1016/0045-7825(82)90069-X
34.
Sonneville
,
V.
, and
Brüls
,
O.
,
2014
, “
Sensitivity Analysis for Multibody Systems Formulated on a Lie Group
,”
Multibody Syst. Dyn.
,
31
(
1
), pp.
47
67
.10.1007/s11044-013-9345-z
35.
Yu
,
W.
, and
Pan
,
Z.
,
2015
, “
Dynamical Equations of Multibody Systems on Lie Groups
,”
Adv. Mech. Eng.
,
7
(
3
), pp.
1
9
.10.1177/1687814015575959
36.
Ren
,
H.
, and
Yang
,
K.
,
2021
, “
A Referenced Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
51
(
3
), pp.
305
342
.10.1007/s11044-020-09750-0
37.
Gear
,
C.
,
Leimkuhler
,
B.
, and
Gupta
,
G.
,
1985
, “
Automatic Integration of Euler-Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
,
12–13
, pp.
77
90
.10.1016/0377-0427(85)90008-1
38.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.10.1016/0045-7825(72)90018-7
39.
Gear
,
C. W.
,
2006
, “
Towards Explicit Methods for Differential Algebraic Equations
,”
BIT
,
46
(
3
), pp.
505
514
.10.1007/s10543-006-0068-x
40.
Bauchau
,
O. A.
,
2003
, “
A Self-Stabilized Algorithm for Enforcing Constraints in Multibody Systems
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3253
3271
.10.1016/S0020-7683(03)00159-8
41.
Bayo
,
E.
, and
Ledesma
,
R.
,
1996
, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
113
130
.10.1007/BF01833296
42.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2009
, “
Eliminating Constraint Drift in the Numerical Simulation of Constrained Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
37–40
), pp.
3151
3160
.10.1016/j.cma.2009.05.013
43.
Hairer
,
E.
, and
Wanner
,
G.
,
1996
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
, 2nd ed.,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
44.
Riha
,
W.
,
1972
, “
Optimal Stability Polynomials
,”
Computation
,
9
(
1
), pp.
37
43
.10.1007/BF02236374
45.
Van Der Houwen
,
P. J.
, and
Sommeijer
,
B. P.
,
1980
, “
On the Internal Stability of Explicit M-Stage Runge-Kutta Methods for Large M-Values
,”
ZAMM Z. Angew. Math. Mech.
,
60
(
10
), pp.
479
485
.10.1002/zamm.19800601005
46.
Kleefeld
,
B.
, and
Martín-Vaquero
,
J.
,
2016
, “
SERK2v3: Solving Mildly Stiff Nonlinear Partial Differential Equations
,”
J. Comput. Appl. Math.
,
299
, pp.
194
206
.10.1016/j.cam.2015.11.045
47.
O'Sullivan
,
S.
,
2015
, “
A Class of High-Order Runge-Kutta-Chebyshev Stability Polynomials
,”
J. Comput. Phys.
,
300
, pp.
665
678
.10.1016/j.jcp.2015.07.050
48.
Hairer
,
E.
,
Nørsett
,
S. P.
, and
Wanner
,
G.
,
1987
,
Solving Ordinary Differential Equations I: Nonstiff Problems
, 2nd ed.,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
49.
Shampine
,
L. F.
,
2018
,
Numerical Solution of Ordinary Differential Equations
,
Chapman & Hall
,
NewYork
.
50.
Gustafsson
,
K.
,
1994
, “
Control-Theoretic Techniques for Stepsize Selection in Implicit Runge-Kutta Methods
,”
ACM T. Math. Software
,
20
(
4
), pp.
496
517
.10.1145/198429.198437
51.
Watts
,
H. A.
,
1984
, “
Step Size Control in Ordinary Differential Equation Solvers
,” Sandia National Labs., Albuquerque, NM, Report No.
SAND-83-2262
.https://www.osti.gov/biblio/5371058
52.
Sommeijer
,
B.
,
Shampine
,
L.
, and
Verwer
,
J.
,
1998
, “
RKC: An Explicit Solver for Parabolic PDEs
,”
J. Comput. Appl. Math.
,
88
(
2
), pp.
315
326
.10.1016/S0377-0427(97)00219-7
53.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
54.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.10.1007/s11044-007-9084-0
55.
Bricard
,
R.
,
1927
,
Leçons de Cinématique. II: Cinématique Appliquée
,
Gauthier-Villars
, Paris, France.
You do not currently have access to this content.