This work is to develop an experiment-validated numerical model to elucidate the wave transmission mechanisms through a surrogate head under blast loading. Repeated shock tube tests were conducted on a surrogate head, i.e., water-filled polycarbonate shell. Surface strain on the skull simulant and pressure inside the brain simulant were recorded at multiple locations. A numerical model was developed to capture the shock wave propagation within the shock tube and the fluid-structure interaction between the shock wave and the surrogate head. The obtained numerical results were compared with the experimental measurements. The experiment-validated numerical model was then used to further understand the wave transmission mechanisms from the blast to the surrogate head, including the flow field around the head, structural response of the skull simulant, and pressure distributions inside the brain simulant. Results demonstrated that intracranial pressure in the anterior part of the brain simulant was dominated by the direct blast wave propagation, while in the posterior part it was attributed to both direct blast wave propagation and skull flexure, which took effect at a later time. This study served as an exploration of the physics of blast-surrogate interaction and a precursor to a realistic head model.

References

1.
Warden
,
D.
,
2006
, “
Military TBI During the Iraq and Afghanistan Wars
,”
J. Head Trauma Rehab.
,
21
(
5
), pp.
398
402
.10.1097/00001199-200609000-00004
2.
Ender
,
M. G.
,
2010
, “
Invisible Wounds of War: Psychological and Cognitive Injuries, Their Consequences, and Services to Assist Recovery
,”
Contemp. Sociol.
,
39
(
4
), pp.
399
402
.10.1177/0094306110373236a
3.
Marshall
,
K. R.
,
Holland
,
S. L.
,
Meyer
,
K. S.
,
Martin
,
E. M.
,
Wilmore
,
M.
, and
Grimes
,
J. B.
,
Mild Traumatic Brain Injury Screening, Diagnosis, and Treatment
,”
Mil. Med.
,
177
(
8 Suppl
), pp.
67
75
.
4.
Long
,
J. B.
,
Bentley
,
T. L.
,
Wessner
,
K. A.
,
Cerone
,
C.
,
Sweeney
,
S.
, and
Bauman
,
R. A.
,
2009
, “
Blast Overpressure in Rats: Recreating a Battlefield Injury in the Laboratory
,”
J. Neurotraum.
,
26
(
6
), pp.
827
840
.10.1089/neu.2008.0748
5.
Cheng
,
J. M.
,
Gu
,
J. W.
,
Ma
,
Y. A.
,
Yang
,
T.
,
Kuang
,
Y. Q.
,
Li
,
B. C.
and
Kang
,
J. Y.
,
2010
, “
Development of a Rat Model for Studying Blast-Induced Traumatic Brain Injury
,”
J. Neurol. Sci.
,
294
(
1–2
), pp.
23
28
.10.1016/j.jns.2010.04.010
6.
Risling
,
M.
,
Plantman
,
S.
,
Angeria
,
M.
,
Rostami
,
E.
,
Bellander
,
B. M.
,
Kirkegaard
,
M.
,
Arborelius
,
U.
, and
Davidsson
,
J.
,
2011
, “
Mechanisms of Blast Induced Brain Injuries, Experimental Studies in Rats
,”
Neuroimage
,
54
, pp.
S89
S97
.10.1016/j.neuroimage.2010.05.031
7.
Saljo
,
A.
,
Mayorga
,
M.
,
Bolouri
,
H.
,
Svensson
,
B.
, and
Hamberger
,
A.
,
2011
, “
Mechanisms and Pathophysiology of the Low-Level Blast Brain Injury in Animal Models
,”
Neuroimage
,
54
, pp.
S83
S88
.10.1016/j.neuroimage.2010.05.050
8.
Bolander
,
R.
,
Mathie
,
B.
,
Bir
,
C.
,
Ritzel
,
D.
, and
Vandevord
,
P.
,
2011
, “
Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat When Exposed to a Shock Wave
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2550
2559
.10.1007/s10439-011-0343-0
9.
Sundaramurthy
,
A.
,
Alai
,
A.
,
Ganpule
,
S.
,
Holmberg
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model
,”
J. Neurotram.
,
29
(
13
), pp.
2352
2364
.10.1089/neu.2012.2413
10.
Alley
,
M. D.
,
Schimizze
,
B. R.
, and
Son
,
S. F.
,
2011
, “
Experimental Modeling of Explosive Blast-Related Traumatic Brain Injuries
,”
Neuroimage
,
54
, pp.
S45
S54
.10.1016/j.neuroimage.2010.05.030
11.
Ganpule
,
S.
,
Alai
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Mechanics of Blast Loading on the Head Models in the Study of Traumatic Brain Injury Using Experimental and Computational Approaches
,”
Biomech. Model. Mech.
,
12
(3), pp. 511–531.10.1007/s10237-012-0421-8
12.
Zhu
,
F.
,
Wagner
,
C.
,
Dal Cengio Leonardi
,
A.
,
Jin
,
X.
,
VandeVord
,
P.
,
Chou
,
C.
,
Yang
,
K.
H.
, and
King
,
A. I.
,
2012
, “
Using a Gel/Plastic Surrogate to Study the Biomechanical Response of the Head Under Air Shock Loading: a Combined Experimental and Numerical Investigation
,”
Biomech. Model Mech.
,
11
(
3
), pp.
341
353
.10.1007/s10237-011-0314-2
13.
Liu
,
M. B.
,
Liu
,
G. R.
, and
Lam
,
K. Y.
,
2002
, “
Investigations Into Water Mitigation Using a Meshless Particle Method
,”
Shock Waves
,
12
(
3
), pp.
181
195
.10.1007/s00193-002-0163-0
14.
Chen
,
Y.
, and
Ostoja-Starzewski
,
M.
,
2010
, “
MRI-Based Finite Element Modeling of Head Trauma: Spherically Focusing Shear Waves
,”
Acta Mech.
,
213
(
1–2
), pp.
155
167
.10.1007/s00707-009-0274-0
15.
Bauman
,
R. A.
,
Ling
,
G.
,
Tong
,
L.
,
Januszkiewicz
,
A.
,
Agoston
,
D.
,
Delanerolle
,
N.
,
Kim
,
Y.
,
Ritzel
,
D.
,
Bell
,
R.
, and
Ecklund
,
J.
,
2009
, “
An Introductory Characterization of a Combat-Casualty-Care Relevant Swine Model of Closed Head Injury Resulting From Exposure to Explosive Blast
,”
J. Neurotram.
,
26
(
6
), pp.
841
860
.10.1089/neu.2008.0898
16.
Chavko
,
M.
,
Koller
,
W. A.
,
Prusaczyk
,
W. K.
, and
McCarron
,
R. M.
,
2007
, “
Measurement of Blast Wave by a Miniature Fiber Optic Pressure Transducer in the Rat Brain
,”
J. Neurosci. Meth.
,
159
(
2
), pp.
277
281
.10.1016/j.jneumeth.2006.07.018
17.
Chavko
,
M.
,
Watanabe
,
T.
,
Adeeb
,
S.
,
Lankasky
,
J.
,
Ahlers
,
S. T.
, and
McCarron
,
R. M.
,
2011
, “
Relationship Between Orientation to a Blast and Pressure Wave Propagation Inside the Rat Brain
,”
J. Neurosci. Meth.
,
195
(
1
), pp.
61
66
.10.1016/j.jneumeth.2010.11.019
18.
Nyein
,
M. K.
,
Jason
,
A. M.
,
Yu
,
L.
,
Pita
,
C. M.
,
Joannopoulos
,
J. D.
,
Moore
,
D. F.
, and
Radovitzky
,
R. A.
,
2010
, “
In Silico Investigation of Intracranial Blast Mitigation With Relevance to Military Traumatic Brain Injury
,”
Proc. Natl. Acad. Sci. USA
,
107
(
48
), pp.
20703
20708
.10.1073/pnas.1014786107
19.
Bhattacharjee
,
Y.
,
2008
, “
Neuroscience—Shell Shock Revisited: Solving the Puzzle of Blast Trauma
,”
Science
,
319
(
5862
), pp.
406
408
.10.1126/science.319.5862.406
20.
Courtney
,
A. C.
, and
Courtney
,
M. W.
,
2009
, “
A Thoracic Mechanism of Mild Traumatic Brain Injury due to Blast Pressure Waves
,”
Med. Hypotheses
,
72
(
1
), pp.
76
83
.10.1016/j.mehy.2008.08.015
21.
Moss
,
W. C.
,
King
,
M. J.
, and
Blackman
,
E. G.
,
2009
, “
Skull Flexure From Blast Waves: A Mechanism for Brain Injury With Implications for Helmet Design
,”
Phys. Rev. Lett.
,
103
(
10
), pp. 1–4.10.1103/PhysRevLett.103.108702
22.
Finkel
,
M. F.
,
2006
, “
The Neurological Consequences of Explosives
,”
J. Neurol. Sci.
,
249
(
1
), pp.
63
67
.10.1016/j.jns.2006.06.005
23.
Krave
,
U.
,
Hojer
,
S.
, and
Hansson
,
H. A.
,
2005
, “
Transient, Powerful Pressures Are Generated in the Brain by a Rotational Acceleration Impulse to the Head
,”
Eur. J. Neurosci.
,
21
(
10
), pp.
2876
2882
.10.1111/j.1460-9568.2005.04115.x
24.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
226
236
.10.1115/1.1691446
25.
Nakagawa
,
A.
,
Fujimura
,
M.
,
Kato
,
K.
,
Okuyama
,
H.
,
Hashimoto
,
T.
,
Takayama
,
K.
, and
Tominaga
,
T.
,
2009
, “
Shock Wave-Induced Brain Injury in Rat: Novel Traumatic Brain Injury Animal Model
,”
Acta Neurochirurgica Suppl.
,
102
, pp.
421
424
.10.1007/978-3-211-85578-2_82
26.
Goeller
,
J.
,
Wardlaw
,
A.
,
Treichler
,
D.
,
O'Bruba
,
J.
, and
Weiss
,
G.
,
2012
, “
Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury
,”
J. Neurotram.
,
29
(
10
), pp.
1970
1981
.10.1089/neu.2011.2224
27.
Anderson
,
J. D.
,
2001
,
Fundamentals of Aerodynamics
,
McGraw-Hill
,
New York
.
28.
Ganpule
,
S.
,
Gu
,
L.
,
Alai
,
A.
, and
Chandra
,
N.
,
2012
, “
Role of Helmet in the Mechanics of Shock Wave Propagation Under Blast Loading Conditions
,”
Comput. Meth. Biomech. Biomed. Eng.
,
15
(
11
), pp.
1233
1244
.10.1080/10255842.2011.597353
29.
Lubock
,
P.
, and
Goldsmith
,
W.
,
1980
, “
Experimental Cavitation Studies in a Model Head-Neck System
,”
J. Biomech.
,
13
(
12
), pp.
1041
1052
.10.1016/0021-9290(80)90048-2
30.
Marklund
,
N.
,
Clausen
,
F.
,
Lewen
,
A.
,
Hovda
,
D. A.
,
Olsson
,
Y.
, and
Hillered
,
L.
,
2001
, “
Alpha-phenyl-tert-N-butyl nitrone (PBN) Improves Functional and Morphological Outcome After Cortical Contusion Injury in the Rat
,”
Acta Neurochir.
,
143
(
1
), pp.
73
81
.10.1007/s007010170141
31.
Nakagawa
,
A.
,
Fujimura
,
M.
,
Kato
,
K.
,
Okuyama
,
H.
,
Hashimoto
,
T.
,
Takayama
,
K.
, and
Tominaga
,
T.
,
2009
, “
Shock Wave-Induced Brain Injury in Rat: Novel Traumatic Brain Injury Animal Model
,”
Acta Neurochirurgica Suppl.
,
102
, pp.
421
424
.10.1007/978-3-211-85578-2
32.
Mao
,
H. J.
,
Zhang
,
L. Y.
,
Jiang
,
B. H.
,
Genthikatti
,
V. V.
,
Jin
,
X.
,
Zhu
,
F.
,
Makwana
,
R.
,
Gill
,
A.
,
Jandir
,
G.
,
Singh
,
A.
, and
Yang
,
K. H.
,
2013
, “
Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases
,”
ASME J. Biomech. Eng.
,
135
(
11
), p. 111002.10.1115/1.4025101
33.
Willinger
,
R.
,
Kang
,
H.-S.
, and
Diaw
,
B.
,
1999
, “
Three-Dimensional Human Head Finite-Element Model Validation Against Two Experimental Impacts
,”
Ann. Biomed. Eng.
,
27
(
3
), pp.
403
410
.10.1114/1.165
34.
Taylor
,
P. A.
, and
Ford
,
C. C.
,
2009
, “
Simulation of Blast-Induced Early-Time Intracranial Wave Physics Leading to Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
131
(
6
), p. 061007.10.1115/1.3118765
35.
Kleinschmit
,
N. N.
,
2011
, “
A Shock Tube Technique for Blast Wave Simulation and Studies of Flow Structure Interactions in Shock tube Blast Experiments
,” Master thesis, University of Nebraska-Lincoln, Lincoln, NE.
You do not currently have access to this content.