The two-stage and three-stage Radau IIA stiff integrators, belonging to the implicit Runge–Kutta family, are implemented in a computationally efficient manner to solve flexible multibody systems. These problems feature large displacements and finite rotations together with small elastic deformations. The two-stage and three-stage algorithms are modified to integrate the finite element based, second order differential equations of multibody dynamics directly. A new simplified Newton iteration is implemented for the two-stage algorithm to reduce its computational cost. The resulting linear system of equations obtained at each Newton iteration is solved efficiently for both the two-stage and three-stage algorithms. The Jacobian matrix in the simplified Newton iterations is evaluated through numerical differentiation. A compact storage strategy is used to archive the banded, sparse matrices. The error estimation based on the embedded formula and step size selection are discussed in detail. The proposed schemes are validated with the help of different numerical examples. The simulation results are consistent with those of other types of integrators. These examples show that Radau IIA algorithms can solve stiff problems with acceptable speed while guaranteeing stability and accuracy.

1.
Cardona
,
A.
, and
Gerardin
,
M.
, 1989, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
0045-7949,
33
, pp.
801
820
.
2.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamic Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
3.
Bauchau
,
O.
and
Laulusa
,
A.
, 2008, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
1
), p.
011005
.
4.
Hairer
,
E.
, and
Wanner
,
G.
, 1996,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer-Verlag
,
New York
.
5.
Stumpp
,
T.
, 2006, “
Integration of Strongly Damped Mechanical Systems by Runge–Kutta Methods
,”
Progress in Industrial Mathematics at ECMI 2004
,
A.
Di Bucchianico
,
R.
Mattheij
, and
M.
Peletier
, eds.,
Springer
,
Berlin
, pp.
642
646
.
6.
Shampine
,
L.
, and
Reichelt
,
M.
, 1997, “
The MATLAB ODE Suite
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
18
(
1
), pp.
1
22
.
7.
Cash
,
J.
, 2003, “
Review Paper. Efficient Numerical Methods for the Solution of Stiff Initial-Value Problems and Differential Algebraic Equations
,”
Proc. R. Soc. London, Ser. A
0950-1207,
459
(
2032
), pp.
797
815
.
8.
Bauchau
,
O.
, and
Epple
,
A.
, 2007, “
Performance Evaluation of Numerical Integration Schemes for Flexible Multibody Systems
,”
Proceedings of Multibody Dynamics 2007, ECCOMAS Thematic Conference
,
C.
Bottasso
,
P.
Masarati
, and
L.
Trainelli
, eds., 25–28 June, Milano, Italy.
9.
Bathe
,
K.
, and
Irfan Baig
,
M.
, 2005, “
On A Composite Implicit Time Integration Procedure for Nonlinear Dynamics
,”
Comput. Struct.
0045-7949,
83
(
31–32
), pp.
2513
2524
.
10.
Bathe
,
K.
, 2007, “
Conserving Energy and Momentum in Nonlinear Dynamics: A Simple Implicit Time Integration Scheme
,”
Comput. Struct.
0045-7949,
85
(
7–8
), pp.
437
445
.
11.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
, 2007, “
On an Implementation of the Hilber–Hughes–Taylor Method in the Context of Index 3 Differential-Algebraic Equations of Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
2
(
1
), pp.
73
85
.
12.
Jay
,
L.
, 2000, “
Inexact Simplified Newton Iterations for Implicit Runge–Kutta Method
,”
SIAM (Soc. Ind. Appl. Math) J. Numer. Anal.
,
38
(
4
), pp.
1369
1388
.
13.
Brown
,
P. N.
,
Hinmarsh
,
A. C.
, and
Petzold
,
L. R.
, 1994, “
Using Krylov Methods in the Solution of Large-Scale Differential-Algebraic Systems
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
15
(
6
), pp.
1467
1488
.
14.
Amodio
,
P.
, and
Brugnano
,
L.
, 1997, “
A Note on the Efficient Implementation of Implicit Methods for ODEs
,”
J. Comput. Appl. Math.
0377-0427,
87
(
1
), pp.
1
9
.
15.
van der Houwen
,
P.
, and
de Swart
,
J. J.
, 1997, “
Parallel Linear System Solvers for Runge-Kutta Methods
,”
Adv. Comput. Math.
1019-7168,
7
(
1–2
), pp.
157
181
.
16.
van der Houwen
,
P.
, and
de Swart
,
J. J.
, 1997, “
Triangularly Implicit Iteration Methods for ODE-IVP Solvers
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
18
(
1
), pp.
41
55
.
17.
Fung
,
T.
, 2002, “
On the Equivalence of the Time Domain Differential Quadrature Method and the Dissipative Runge–Kutta Collocation Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
2
), pp.
409
431
.
18.
Aubry
,
A.
, and
Chartier
,
P.
, 1998, “
On Improving the Convergence of Radau IIA Methods Applied to Index 2 DAEs
,”
SIAM (Soc. Ind. Appl. Math) J. Numer. Anal.
,
35
(
4
), pp.
1347
1367
.
19.
Pytlak
,
R.
, 1999,
Numerical Methods for Optimal Control Problems With State Constraints
,
Springer
,
Berlin
.
20.
Hairer
,
E.
, and
Wanner
,
G.
, 1999, “
Stiff Differential Equations Solved by Radau Methods
,”
J. Comput. Appl. Math.
0377-0427,
111
(
1–2
), pp.
93
111
.
21.
de Swart
,
J. J. B.
, and
Söderlind
,
G.
, 1997, “
On the Construction of Error Estimators for Implicit Runge–Kutta Methods
,”
J. Comput. Appl. Math.
0377-0427,
86
(
2
), pp.
347
358
.
22.
Butcher
,
J.
, and
Johnston
,
P.
, 1993, “
Estimating local truncation errors for Runge–Kutta methods
,”
J. Comput. Appl. Math.
0377-0427,
45
(
1–2
), pp.
203
212
.
23.
González-Pinto
,
S.
,
Montijano
,
J.
, and
Pérez-Rodríguez
,
S.
, 2004, “
Two-Step Error Estimators for Implicit Runge–Kutta Methods Applied to Stiff Systems
,”
ACM Trans. Math. Softw.
0098-3500,
30
(
1
), pp.
1
18
.
24.
Higham
,
D. J.
, 1989, “
Robust Defect Control With Runge–Kutta Schemes
,”
SIAM (Soc. Ind. Appl. Math) J. Numer. Anal.
,
26
(
5
), pp.
1175
1183
.
25.
Shampine
,
L.
, 2005, “
Solving ODEs and DDEs With Residual Control
,”
Appl. Numer. Math.
0168-9274,
52
(
1
), pp.
113
127
.
26.
Schaub
,
M.
, and
Simeon
,
B.
, 2002, “
Automatic h-Scaling for the Efficient Time Integration of Stiff Mechanical Systems
,”
Multibody Syst. Dyn.
1384-5640,
8
(
3
), pp.
327
343
.
27.
Gustafsson
,
K.
, 1991, “
Control Theoretic Techniques for Stepsize Selection in Explicit Runge–Kutta Methods
,”
ACM Trans. Math. Softw.
0098-3500,
17
(
4
), pp.
533
554
.
28.
Gustafsson
,
K.
, 1994, “
Control-Theoretic Techniques for Stepsize Selection in Implicit Runge–Kutta Methods
,”
ACM Trans. Math. Softw.
0098-3500,
20
(
4
), pp.
496
517
.
29.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in Fortran: The Art of Scientific Computing
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.