Abstract

The paper provides an analysis of dynamic behavior of peristaltic transport of non-Newtonian fluid in a nonuniform diverging channel with various waveforms. The canonical object of the study is the bifurcation techniques of the physical parameters, from which information on the dynamic response of peristaltic flow can be gained. Special attention is paid to the interaction between local and global dynamics through a nonuniform channel with different wall waveforms, which is shown to generate a range of creative behaviors, involving heteroclinic and homoclinic connections to saddle stagnation points. These closed invariant curves form a novel phenomenon involving different flow scenarios in a finite region, without the need for varying parameters. The bifurcation analytical study is complimented by numerical computations, both of which are used to highlight the impacts predicted on flow parameters, such as Grashof, solute Grashof, heat source/sink, and thermal radiation parameters. We show that properly accounting for the interaction between invariant sets, multiple stagnation points, and streamline patterns leads to unprecedented levels of flow control characteristics. We also compare the bifurcation behaviors of peristaltic transport through uniform and nonuniform channel under different waveforms that will be useful for the topologies controlling stream flow with complex shape.

References

1.
Asghar
,
Z.
,
Ali
,
N.
,
Ahmed
,
R.
,
Waqas
,
M.
, and
Khan
,
W. A.
,
2019
, “
A Mathematical Framework for Peristaltic Flow Analysis of Non-Newtonian Sisko Fluid in an Undulating Porous Curved Channel With Heat and Mass Transfer Effects
,”
Comput. Methods Programs Biomed.
,
182
, p. 105040. 10.1016/j.cmpb.2019.105040
2.
Abbasi
,
A.
,
Zaman
,
A.
,
Farooq
,
W.
, and
Nadeem
,
M. F.
,
2021
, “
Electro-Osmosis Modulated Peristaltic Flow of Oldroyd 4-Constant Fluid in a Non-Uniform Channel
,”
Indian J. Phys.
, epub.
3.
Dorfman
,
A. S.
,
2016
,
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
,
Wiley-ASME Press
, New York.
4.
Liu
,
Y.
, and
Liu
,
W.
,
2020
, “
Blood Flow Analysis in Tapered Stenosed Arteries With the Influence of Heat and Mass Transfer
,”
J. Appl. Math. Comput.
,
63
(
1–2
), pp.
523
541
.10.1007/s12190-020-01328-5
5.
Bhattacharyya
,
A.
,
Kumar
,
R.
, and
Seth
,
G. S.
,
2021
, “
Capturing the Features of Peristaltic Transport of a Chemically Reacting Couple Stress Fluid Through an Inclined Asymmetric Channel With Dufour and Soret Effects in Presence of Inclined Magnetic Field
,”
Indian J. Phys.
, 95(12), pp.
2741
2758
.10.1007/s12648-020-01936-8
6.
Pandey
,
S. K.
, and
Singh
,
A.
,
2019
, “
Peristaltic Transport of Herschel–Bulkley Fluids in Tubes of Variable Cross Section Induced by Dilating Peristaltic Waves: Application to Sliding Hiatus Hernia
,”
Int. J. Dyn. Control
,
7
(
2
), pp.
407
418
.10.1007/s40435-018-0454-7
7.
Hariharan
,
P.
,
Seshadri
,
V.
, and
Banerjee
,
R. K.
,
2008
, “
Peristaltic Transport of Non-Newtonian Fluid in a Diverging Tube With Different Wave Forms
,”
Math. Comput. Model.
,
48
(
7–8
), pp.
998
1017
.10.1016/j.mcm.2007.10.018
8.
Nadeem
,
S.
, and
Akbar
,
N. S.
,
2010
, “
Effects of Heat and Mass Transfer on Peristaltic Flow of Carreau Fluid in a Vertical Annulus
,”
Z. Naturforsch. Sect. A J. Phys. Sci.
,
65
(
10
), pp.
781
792
.10.1515/zna-2010-1004
9.
Mekheimer
,
K. S.
,
Hasona
,
W. M.
,
Abo-Elkhair
,
R. E.
, and
Zaher
,
A. Z.
,
2018
, “
Peristaltic Blood Flow With Gold Nanoparticles as a Third Grade Nanofluid in Catheter: Application of Cancer Therapy
,”
Phys. Lett. Sect. A Gen. At. Solid State Phys.
,
382
(
2–3
), pp.
85
93
.10.1016/j.physleta.2017.10.042
10.
Maiti
,
S.
, and
Misra
,
J. C.
,
2013
, “
Non-Newtonian Characteristics of Peristaltic Flow of Blood in Micro-Vessels
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
8
), pp.
1970
1988
.10.1016/j.cnsns.2012.12.015
11.
Sayed
,
H. M.
,
Aly
,
E. H.
, and
Vajravelu
,
K.
,
2016
, “
Influence of Slip and Convective Boundary Conditions on Peristaltic Transport of Non-Newtonian Nanofluids in an Inclined Asymmetric Channel
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2209
2220
.10.1016/j.aej.2016.04.041
12.
Vaidya
,
H.
,
Makinde
,
O. D.
,
Choudhari
,
R.
,
Prasad
,
K. V.
,
Khan
,
S. U.
, and
Vajravelu
,
K.
,
2020
, “
Peristaltic Flow of Non-Newtonian Fluid Through an Inclined Complaint Nonlinear Tube: Application to Chyme Transport in the Gastrointestinal Tract
,”
Eur. Phys. J. Plus
,
135
, p.
934
.
13.
Vaidya
,
H.
,
Rajashekhar
,
C.
,
Manjunatha
,
G.
,
Prasad
,
K. V.
,
Makinde
,
O. D.
, and
Vajravelu
,
K.
,
2020
, “
Heat and Mass Transfer Analysis of MHD Peristaltic Flow Through a Complaint Porous Channel With Variable Thermal Conductivity
,”
Phys. Scr.
,
95
(
4
), p.
045219
.10.1088/1402-4896/ab681a
14.
Akram
,
S.
,
Razia
,
A.
, and
Afzal
,
F.
,
2020
, “
Effects of Velocity Second Slip Model and Induced Magnetic Field on Peristaltic Transport of Non-Newtonian Fluid in the Presence of Double-Diffusivity Convection in Nanofluids
,”
Arch. Appl. Mech.
,
90
(
7
), pp.
1583
1603
.10.1007/s00419-020-01685-4
15.
Ramesh
,
K.
, and
Devakar
,
M.
,
2018
, “
Influence of Magnetohydrodynamics on Peristaltic Flow of a Walters B Fluid in an Inclined Asymmetric Channel With Heat Transfer
,”
World J. Eng.
,
15
(
4
), pp.
450
467
.10.1108/WJE-09-2017-0305
16.
Misra
,
J. C.
,
Mallick
,
B.
, and
Sinha
,
A.
,
2018
, “
Heat and Mass Transfer in Asymmetric Channels During Peristaltic Transport of an MHD Fluid Having Temperature-Dependent Properties
,”
Alexandria Eng. J.
,
57
(
1
), pp.
391
406
.10.1016/j.aej.2016.09.021
17.
Venugopal Reddy
,
K.
,
Makinde
,
O. D.
, and
Gnaneswara Reddy
,
M.
,
2018
, “
Thermal Analysis of MHD Electro-Osmotic Peristaltic Pumping of Casson Fluid Through a Rotating Asymmetric Micro-Channel
,”
Indian J. Phys.
,
92
(
11
), pp.
1439
1448
.10.1007/s12648-018-1209-1
18.
Mekheimer
,
K. S.
, and
Abd Elmaboud
,
Y.
,
2008
, “
Peristaltic Transport of a Particle-Fluid Suspension Through a Uniform and Non-Uniform Annulus
,”
Appl. Bionics Biomech.
,
5
(
2
), pp.
47
57
.10.1155/2008/391687
19.
Hayat
,
T.
,
Zahir
,
H.
,
Alsaedi
,
A.
, and
Ahmad
,
B.
,
2017
, “
Peristaltic Flow of Rotating Couple Stress Fluid in a Non-Uniform Channel
,”
Results Phys.
,
7
, pp.
2865
2873
.10.1016/j.rinp.2017.08.003
20.
Shit
,
G. C.
, and
Roy
,
M.
,
2015
, “
Effect of Slip Velocity on Peristaltic Transport of a Magneto-Micropolar Fluid Through a Porous Non-Uniform Channel
,”
Int. J. Appl. Comput. Math.
,
1
(
1
), pp.
121
141
.10.1007/s40819-014-0012-8
21.
Chow
,
S. H.
, and
Hale
,
J. K.
,
1982
,
Methods of Bifurcation Theory
,
Springer-Verlag
,
New York
.
22.
Guckenheimer
,
J.
, and
Holmes
,
P. J.
,
1983
,
Nonlinear Oscillations Dynamical Systems, and Bifurcations of Vector Fields
,
Springer-Verlag
,
New York
.
23.
Ning
,
H.
, and
Zhixin
,
L.
,
2021
, “
The Oscillating Periodic Solutions of a Classical Pendulum System With Smooth and Discontinuous Dynamics
,”
Eur. Phys. J. Plus
,
136
, p.
277
.10.1140/epjp/s13360-021-01240-2
24.
Hosham
,
H. A.
,
2018
, “
Bifurcations in Four-Dimensional Switched Systems
,”
Adv. Differ. Eqs.
, 2018, p.
388
.10.1186/s13662-018-1850-1
25.
Hosham
,
H. A.
,
2020
, “
Bifurcation of Limit Cycles in Piecewise-Smooth Systems With Intersecting Discontinuity Surfaces
,”
Nonlinear Dyn.
,
99
(
3
), pp.
2049
2063
.10.1007/s11071-019-05400-z
26.
Cliffe
,
K. A.
,
Spence
,
A.
, and
Tavener
,
S. J.
,
2000
, “
The Numerical Analysis of Bifurcation Problems With Application to Fluid Mechanics
,”
Acta Numer.
,
9
, pp.
39
131
.10.1017/S0962492900000398
27.
Gelfgat
,
A.
,
2019
,
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics
,
Springer
, Cham, Switzerland.
28.
Bro/Ns
,
M.
, and
Hartnack
,
J. N.
,
1999
, “
Streamline Topologies Near Simple Degenerate Critical Points in Two-Dimensional Flow Away From Boundaries
,”
Phys. Fluids
,
11
(
2
), pp.
314
324
.10.1063/1.869881
29.
Deliceoğlu
,
A.
,
and
Bozkurt
,
D.
,
2019
, “
Structural Bifurcation of Divergence-Free Vector Fields Near Non-Simple Degenerate Points With Symmetry
,”
J. Appl. Anal. Comput.
,
9
(
2
), pp.
718
738
.10.11948/2156-907X.20180151
30.
Deliceoğlu
,
A.
, and
Gürcan
,
F.
,
2008
, “
Streamline Topology Near Non-Simple Degenerate Critical Points in Two-Dimensional Flow With Symmetry About an Axis
,”
J. Fluid Mech.
,
606
, pp.
417
432
.10.1017/S0022112008001997
31.
Luo
,
H.
,
Wang
,
Q.
, and
Ma
,
T.
,
2015
, “
A Predicable Condition for Boundary Layer Separation of 2-D Incompressible Fluid Flows
,”
Nonlinear Anal. Real World Appl.
,
22
, pp.
336
341
.10.1016/j.nonrwa.2014.09.007
32.
Ali
,
N.
, and
Ullah
,
K.
,
2019
, “
Bifurcation Analysis for Peristaltic Transport of a Power-Law Fluid
,”
Z. Naturforsch. Sect. A J. Phys. Sci.
,
74
(
3
), pp.
213
225
.10.1515/zna-2018-0410
33.
Ali
,
N.
, and
Ullah
,
K.
,
2020
, “
Bifurcations of Stagnation Points in a Micropolar Fluent Media Under the Influence of an Asymmetric Peristaltic Movement
,”
AIP Adv.
,
10
(
1
), p.
015331
.10.1063/1.5140965
34.
Hosham
,
H. A.
, and
Hafez
,
N. M.
,
2021
, “
Bifurcation Phenomena in the Peristaltic Transport of Non-Newtonian Fluid With Heat and Mass Transfer Effects
,”
J. Appl. Math. Comput.
,
67
(
1–2
), pp.
275
299
.10.1007/s12190-020-01477-7
35.
Ullah
,
K.
, and
Ali
,
N.
,
2019
, “
Stability and Bifurcation Analysis of Stagnation/Equilibrium Points for Peristaltic Transport in a Curved Channel
,”
Phys. Fluids
,
31
(
7
), p.
073103
.10.1063/1.5097555
36.
Ullah
,
K.
, and
Ali
,
N.
,
2021
, “
A Study on the Bifurcation of Stagnation Points for a Peristaltic Transport of Micropolar Fluids With Slip Condition
,”
Phys. Scr.
,
96
(
2
), p.
025207
.10.1088/1402-4896/abcce1
37.
Dhooge
,
A.
,
Govaerts
,
W.
, and
Kuznetsov
,
Y. A.
,
2003
, “
MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs
,”
ACM Trans. Math. Softw.
,
29
(
2
), pp.
141
164
.10.1145/779359.779362
38.
Blyth
,
M.
,
Renson
,
L.
, and
Marucci
,
L.
,
2020
, “
Tutorial of Numerical Continuation and Bifurcation Theory for Systems and Synthetic Biology
,” arXiv:2008.05226v1, pp.1-14.
39.
Hosham
,
H. A.
,
2019
, “
Discontinuous Phenomena in Bioreactor and Membrane Reactor Systems
,”
Int. J. Biomath.
,
12
(
04
), p.
1950046
.10.1142/S1793524519500463
40.
Hosham
,
H. A.
,
2020
, “
Nonlinear Behavior of a Novel Switching Jerk System
,”
Int. J. Bifurc. Chaos
,
30
(
14
), p.
2050202
.10.1142/S0218127420502028
41.
Jiang
,
L.
,
Li
,
J.
, and
Zhang
,
W.
,
2020
, “
Bifurcations and Chaos Dynamics of a Hyperjerk System With Antimonotonicity
,”
Eur. Phys. J. Plus
,
135
(
9
), epub.10.1140/epjp/s13360-020-00786-x
42.
Paffenroth
,
R. C.
,
Doedel
,
E. J.
, and
Dichmann
,
D. J.
,
2002
, “
Continuation of Periodic Orbits Around Lagrange Points and AUTO2000
,”
Adv. Astronaut. Sci
,.,
109
(
I
), pp.
41
60
.http://www.univelt.com/book=156
43.
Dhooge
,
A.
,
Govaerts
,
W.
,
Kuznetsov
,
Y. A.
,
Meijer
,
H. G.
, and
Sautois
,
B.
,
2008
, “
New Features of the Software MatCont for Bifurcation Analysis of Dynamical Systems
,”
Math. Comput. Model. Dyn. Syst.
,
14
(
2
), pp.
147
175
.10.1080/13873950701742754
You do not currently have access to this content.