Abstract

A third-order numerical scheme is proposed for solving fractional partial differential equations (PDEs). The first explicit stage can converge fast, and the second implicit stage is responsible for enlarging the stability region. The fourth-order compact scheme is employed to discretize spatial derivative terms. The stability of the scheme is given for the standard fractional parabolic equation, whereas convergence of the proposed scheme is given for the system of fractional parabolic equations. Mathematical models for heat and mass transfer of Stokes first and second problems using Dufour and Soret effects are given in a set of linear and nonlinear PDEs. Later on, these governing equations are converted into dimensionless PDEs. It is shown that the proposed scheme effectively solves the fractional forms of dimensionless models numerically, and a comparison is also conducted with existing schemes. If readers want it, a computational code for the discrete model system suggested in this paper may be made accessible to them for their convenience.

References

1.
Ross
,
B.
,
1977
, “
The Development of Fractional Calculus 1695–1900
,”
Hist. Math.
,
4
(
1
), pp.
75
89
.10.1016/0315-0860(77)90039-8
2.
Choudhury
,
M. D.
,
Chandra
,
S.
,
Nag
,
S.
,
Das
,
S.
, and
Tarafdar
,
S.
,
2012
, “
Forced Spreading and Rheology of Starch Gel: Viscoelastic Modeling With Fractional Calculus
,”
Colloids Surf. A Physicochem. Eng. Aspects
,
407
, pp.
64
70
.10.1016/j.colsurfa.2012.05.008
3.
Zheng
,
L.
,
Liu
,
Y.
, and
Zhang
,
X.
,
2012
, “
Slip Effects on MHD Flow of a Generalized Oldroyd-B Fluid With Fractional Derivative
,”
Nonlinear Anal. Real World Appl.
,
13
(
2
), pp.
513
523
.10.1016/j.nonrwa.2011.02.016
4.
Sheikh
,
N. A.
,
Ali
,
F.
,
Khan
,
I.
, and
Saqib
,
M.
,
2018
, “
A Modern Approach of Caputo–Fabrizio Time-Fractional Derivative toMHD Free Convection Flow of Generalized Second-Grade Fluid in a Porous Medium
,”
Neural Comput. Appl.
,
30
(
6
), pp.
1865
1875
.10.1007/s00521-016-2815-5
5.
Ali
,
F.
,
Sheikh
,
N. A.
,
Khan
,
I.
, and
Saqib
,
M.
,
2017
, “
Magnetic Field Effect on Blood Flow of Cassonfluid in an Axisymmetric Cylindrical Tube: A Fractional Model
,”
J. Magn. Magn. Mater.
,
423
, pp.
327
336
.10.1016/j.jmmm.2016.09.125
6.
Vázquez
,
J. L.
,
2017
, “
The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion
,”
Non-Local and Nonlinear Diffusions and Interactions: New Methods and Directions
, Springer, Cham, Switzerland, pp.
205
278
.https://arxiv.org/pdf/1706.08241.pdf
7.
Vieru
,
D.
,
Fetecau
,
C.
, and
Fetecau
,
C.
,
2015
, “
Time-Fractional Free Convection Flow Near a Vertical Plate With Newtonian Heating and Mass Diffusion
,”
Therm. Sci.
,
19
(
suppl. 1
), pp.
85
98
.10.2298/TSCI15S1S85V
8.
Shahid
,
N.
,
2015
, “
A Study of Heat and Mass Transfer in a Fractional MHD Flow Over an Infinite Oscillating Plate
,”
SpringerPlus
,
4
(
1
), pp.
640
661
.10.1186/s40064-015-1426-4
9.
Caputo
,
M.
, and
Fabrizio
,
M.
,
2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,”
Prog. Fract. Differen. Appl.
,
1
(
2
), pp.
1
13
.https://dx.doi.org/10.12785/pfda/010201
10.
Shah
,
N. A.
, and
Khan
,
I.
,
2016
, “
Heat Transfer Analysis in a Second-Grade Fluid Over an Oscillating Vertical Plate Using Fractional Caputo-Fabrizio Derivatives
,”
Eur. Phys. J. C
,
76
(
7
), pp.
362
373
.10.1140/epjc/s10052-016-4209-3
11.
Atangana
,
A.
, and
Koca
,
I.
,
2016
, “
On the New Fractional Derivative and Application to Nonlinear Baggs and Freedman Model
,”
J. Nonlinear Sci. Appl.
,
09
(
05
), pp.
2467
2480
.10.22436/jnsa.009.05.46
12.
Atangana
,
A.
,
2016
, “
On the New Fractional Derivative and Application to Nonlinear Fisher's Reaction-Diffusion Equation
,”
Appl. Math. Comput.
,
273
, pp.
948
956
.10.1016/j.amc.2015.10.021
13.
Atangana
,
A.
, and
Baleanu
,
D.
,
2017
, “
Caputo-Fabrizio Derivative Applied to Groundwater Flow Within a Confined Aquifer
,”
J. Eng. Mech.
,
143
(
5
), pp.
1
5
.10.1061/(ASCE)EM.1943-7889.0001091
14.
Algahtani, O. J. J., 2016, “Comparing the Atangana-Baleanu and Caputo-Fabrizio Derivative With Fractional Order: Allen Cahn Model,”
Chaos Solitons Fractals
, 89, pp. 552–559.10.1016/j.chaos.2016.03.026
15.
Sheikh
,
N. A.
,
Ali
,
F.
,
Khan
,
I.
,
Gohar
,
M.
, and
Saqib
,
M.
,
2017
, “
On the Applications of Nanofluids to Enhance the Performance of Solar Collectors: A Comparative Analysis of Atangana-Baleanu and Caputo-Fabrizio Fractional Models
,”
Eur. Phys. J. Plus
,
132
(
12
), pp.
540
551
.10.1140/epjp/i2017-11809-9
16.
Majeed, S., Ali, F., Imtiaz, A., Khan, I., and Andualem, M.,
2022
, “
Fractional Model of MHD Blood Flow in a Cylindrical Tube Containing Magnetic Particles
,”
Scientific Reports
,
12(1)
, pp.
1
16
.10.1038/s41598-021-04088-9
17.
Khan
,
A.
,
Abro
,
K. A.
,
Tassaddiq
,
A.
, and
Khan
,
I.
,
2017
, “
Atangana–Baleanu and Caputo Fabrizio Analysis of Fractional Derivatives for Heat and Mass Transfer of Second-Grade Fluids Over a Vertical Plate: A Comparative Study
,”
Entropy
,
19
(
8
), pp.
279
291
.10.3390/e19080279
18.
Jassim
,
H. K.
,
2016
, “
Extending Application of Adomian Decomposition Method for Solving a Class of Volterra Integrodifferential Equations Within Local Fractional Integral Operators
,”
J. Coll. Educ. Pure Sci.
,
6
(
1
), pp.
146
155
.https://www.naturalspublishing.com/files/published/0gb83k287mo759.pdf
19.
Babaei
,
A.
,
Jafari
,
H.
, and
Ahmadi
,
M.
,
2019
, “
A Fractional Order HIV/AIDS Model Based on the Effect of Screening of Unaware Infectives
,”
Math. Meth. Appl. Sci.
,
42
(
7
), p.
2334
.10.1002/mma.5511
20.
Nikan
,
O.
,
Jafari
,
H.
, and
Golbabai
,
A.
,
2020
, “
Numerical Analysis of the Fractional Evolution Model for Heat Flow in Materials With Memory
,”
Alexandria Eng. J.
,
59
(
4
), pp.
2627
2637
.10.1016/j.aej.2020.04.026
21.
Babaei
,
A.
,
Jafari
,
H.
, and
Liya
,
A.
,
2020
, “
Mathematical Models of HIV/AIDS and Drug Addiction in Prisons
,”
Eur. Phys. J. Plus
,
135
(
5
), p.
395
.10.1140/epjp/s13360-020-00400-0
22.
Ganji
,
R. M.
,
Jafari
,
H.
, and
Nemati
,
S.
,
2020
, “
A New Approach for Solving Integro-Differential Equations of Variable Order
,”
J. Comput. Appl. Math.
,
379
, p.
112946
.10.1016/j.cam.2020.112946
23.
Ganji
,
R. M.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2020
, “
A New Approach for Solving Multi Variable Orders Differential Equations With Mittag–Leffler Kernel
,”
Chaos, Solitons Fractals
,
130
, p.
109405
.10.1016/j.chaos.2019.109405
24.
Tuan
,
N. H.
,
Ganji
,
R. M.
, and
Jafari
,
H.
,
2020
, “
A Numerical Study of Fractional Rheological Models and Fractional Newell-Whitehead-Segel Equation With Non-Local and Non-Singular Kernel
,”
Chin. J. Phys.
,
68
, pp.
308
320
.10.1016/j.cjph.2020.08.019
25.
Erfanifar
,
R.
,
Sayevand
,
K.
,
Ghanbari
,
N.
, and
Esmaeili
,
H.
,
2021
, “
A Modified Chebyshev ϑ-Weighted Crank–Nicolson Method for Analyzing Fractional Sub-Diffusion Equations
,”
Numer Methods Partial Differen. Eq.
,
37
(
1
), pp.
614
625
.10.1002/num.22543
26.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
27.
Nawaz
,
Y.
, and
Arif
,
M. S.
,
2021
, “
Modified Class of Explicit and Enhanced Stability Region Schemes: Application to Mixed Convection Flow in a Square Cavity With a Convective Wall
,”
Int. J. Numer. Methods Fluids
,
93
(
6
), pp.
1759
1787
.10.1002/fld.4951
28.
Pasha
,
S. A.
,
Nawaz
,
Y.
, and
Arif
,
M. S.
,
2021
, “
A Third-Order Accurate in Time Method for Boundary Layer Flow Problems
,”
Appl. Numer. Math.
,
161
, pp.
13
26
.10.1016/j.apnum.2020.10.023
29.
Nawaz
,
Y.
,
Arif
,
M. S.
, and
Shatanawi
,
W.
,
2022
, “
A New Numerical Scheme for Time Fractional Diffusive SEAIR Model With Nonlinear Incidence Rate: An Application to Computational Biology
,”
Fractal Fract.
,
6
(
2
), p.
78
.10.3390/fractalfract6020078
30.
Nawaz
,
Y.
,
Arif
,
M. S.
, and
Abodayeh
,
K.
,
2022
, “
An Explicit-Implicit Numerical Scheme for Time Fractional Boundary Layer Flows
,”
Int. J. Numer. Methods Fluids
, 94(7), pp.
920
940
.10.1002/fld.5078
31.
Nawaz
,
Y.
,
Arif
,
M. S.
, and
Abodayeh
,
K.
,
2022
, “
A Numerical Scheme for Fractional Mixed Convection Flow Over Flat and Oscillatory Plates
,”
J. Comput. Nonlinear Dyn.
,
17
(
7
), p. 071008.10.1115/1.4054483
You do not currently have access to this content.