Abstract

The aim of this work is to numerically investigate the nature of the equilibrium points of the axisymmetric five-body problem. Specifically, we consider two cases regarding the convex or concave configuration of the four primary bodies. The specific configuration of the primaries depends on two angle parameters. Combining numerical methods with systematic and rigorous analysis, we reveal how the angle parameters affect not only the relative positions of the equilibrium points but also their linear stability. Our computations reveal that linearly stable equilibria exist in all possible central configurations of the primaries, thus improving and also correcting the findings of previous similar works.

References

1.
Abouelmagd
,
E.
, and
Guirao
,
J.
,
2016
, “
On the Perturbed Restricted Three-Body Problem
,”
Appl. Math. Nonlinear Sci.
,
1
(
1
), pp.
123
144
.10.21042/AMNS.2016.1.00010
2.
Ansari
,
A.
,
2017
, “
Investigation of the Effect of Albedo and Oblateness on the Circular Restricted Four Variable Bodies Problem
,”
Appl. Math. Nonlinear Sci.
,
2
(
2
), pp.
529
542
.10.21042/AMNS.2017.2.00044
3.
Hampton
,
M.
,
2005
, “
Stacked Central Configurations: New Examples in the Planar Five-Body Problem
,”
Nonlinearity
,
18
(
5
), pp.
2299
2304
.10.1088/0951-7715/18/5/021
4.
Kulesza
,
M.
,
Marchesin
,
M.
, and
Vidal
,
C.
,
2011
, “
Restricted Rhomboidal Five Body Problem
,”
J. Phys. A
,
44
, pp.
2813
2821
.10.1088/1751-8113/44/48/485204
5.
Suraj
,
M.
,
Asique
,
M.
,
Prasad
,
U.
,
Hassan
,
M.
, and
Shalini
,
K.
,
2017
, “
Fractal Basins of Attraction in the Restricted Four-Body Problem When the Primaries Are Triaxial Rigid Bodies
,”
Astrophys. Space Sci.
,
362
, p.
211
.10.1007/s10509-017-3188-7
6.
Suraj
,
M.
,
Aggarwal
,
R.
, and
Arora
,
M.
,
2017
, “
On the Restricted Four-Body Problem With the Effect of Small Perturbations in the Coriolis and Centrifugal Forces
,”
Astrophys. Space Sci.
,
362
, p.
159
.10.1007/s10509-017-3123-y
7.
Suraj
,
M.
,
Zotos
,
E.
,
Kaur
,
C.
,
Aggarwal
,
R.
, and
Mittal
,
A.
,
2018
, “
Fractal Basins of Convergence of Libration Points in the Planar Copenhagen Problem With a Repulsive Quasi-Homogeneous Manev–Type Potential
,”
Int. J. Non-Linear Mech.
,
103
, pp.
113
127
.10.1016/j.ijnonlinmec.2018.04.012
8.
Suraj
,
M. S.
,
Zotos
,
E. E.
,
Aggarwal
,
R.
, and
Mittal
,
A.
,
2019
, “
Unveiling the Basins of Convergence in the Pseudo-Newtonian Planar Circular Restricted Four-Body Problem
,”
New Astron.
,
66
, pp.
52
67
.10.1016/j.newast.2018.07.009
9.
Ollöngren
,
A.
,
1988
, “
On the Particular Restricted Five-Body Problem. an Analysis With Computer Algebra
,”
J. Symbol. Comput.
,
6
, pp.
117
126
.10.1016/S0747-7171(88)80027-0
10.
Papadakis
,
K.
, and
Kanavos
,
S.
,
2007
, “
Numerical Exploration of the Photogravitational Restricted Five-Body Problem
,”
Astrophys. Space Sci.
,
310
(
1–2
), pp.
119
130
.,10.1007/s10509-007-9486-8
11.
Suraj
,
M. S.
,
Abouelmagd
,
E. I.
,
Aggarwal
,
R.
, and
Mittal
,
A.
,
2019
, “
The Analysis of Restricted Five-Body Problem Within Frame of Variable Mass
,”
New Astron.
,
70
, pp.
12
21
.10.1016/j.newast.2019.01.002
12.
Gao
,
C.
,
Yuan
,
J.
, and
Sun
,
C.
,
2017
, “
Equilibrium Points and Zero Velocity Surfaces in the Axisymmetric Restricted Five-Body Problem
,”
Astrophys. Space Sci.
,
362
, p.
72
.10.1007/s10509-017-3046-7
13.
Marchesin
,
M.
, and
Vidal
,
C.
,
2013
, “
Spatial Restricted Rhomboidal Five-Body Problem and Horizontal Stability of Its Periodic Solutions
,”
Celestial Mech. Dyn. Astron.
,
115
(
3
), pp.
261
279
.,10.1007/s10569-012-9462-7
14.
Suraj
,
M. S.
,
Sachan
,
P.
,
Zotos
,
E.
,
Mittal
,
A.
, and
Aggarwal
,
R.
,
2019
, “
On the Fractal Basins of Convergence of the Libration Points in the Axisymmetric Five-Body Problem: The Convex Configuration
,”
Int. J. Non-Linear Mech.
,
109
, pp.
80
106
.10.1016/j.ijnonlinmec.2018.11.005
15.
Suraj
,
M. S.
,
Sachan
,
P.
,
Zotos
,
E.
,
Mittal
,
A.
, and
Aggarwal
,
R.
,
2019
, “
On the Newton-Raphson Basins of Convergence Associated With the Libration Points in the Axisymmetric Restricted Five-Body Problem: The Concave Configuration
,”
Int. J. Non-Linear Mech.
,
112
, pp.
25
47
.10.1016/j.ijnonlinmec.2019.02.013
16.
Érdi
,
B.
, and
Czirják
,
Z.
,
2016
, “
Central Configurations of Four Bodies With an Axis of Symmetry
,”
Celestial Mech. Dyn. Astron.
,
125
(
1
), pp.
33
70
.,10.1007/s10569-016-9672-5
17.
Karapetyan
,
A.
, and
Naralenkova
,
I.
,
1998
, “
The Bifurcation of the Equilibria of Mechanical Systems With Symmetrical Potential
,”
J. Appl. Math. Mech.
,
62
(
1
), pp.
9
17
.10.1016/S0021-8928(98)00021-5
18.
Nagler
,
J.
,
2004
, “
Crash Test for the Copenhagen Problem
,”
Phys. Rev. E
,
69
(
6
), p.
066218
.10.1103/PhysRevE.69.066218
19.
Nagler
,
J.
,
2005
, “
Crash Test for the Restricted Three-Body Problem
,”
Phys. Rev. E
,
71
(
2
), p.
026227
.10.1103/PhysRevE.71.026227
20.
Press
,
H.
,
Teukolsky
,
S.
,
Vetterling
,
W.
, and
Flannery
,
B.
,
1992
,
Numerical Recipes in Fortran 77
,
Cambridge University Press
, Cambridge, UK.
21.
Wolfram
,
S.
,
2003
,
The Mathematica Book
,
Wolfram Media
, Champaign, IL.
You do not currently have access to this content.