Abstract

Dynamic analysis of power transmission lines with ice-shedding is conducted in this work. The power transmission line is first simplified as a uniform slender round beam. While the beam can have large displacements, rotations, and deformations, its strains are assumed to be small. The bending stiffness of the transmission line is considered here, but its shear and torsion effects are neglected. An efficient absolute nodal coordinate beam formulation is developed based on the above assumptions, and the number of generalized coordinates of each element of the beam is reduced to the least. The mass matrix is constant and the generalized elastic force is evaluated by constant stiffness tensors and generalized coordinates; hence, the current formulation is very efficient. Dynamic responses of power transmission lines with ice-shedding are then calculated. A benchmark planar two-span line is first considered, and the results are validated by the commercial finite element software abaqus. By examining strain states of the transmission line, it is found that its bending stiffness cannot be neglected in this dynamic analysis. Dynamic analysis of a three-dimensional three-span line is then conducted, where towers are not in a straight line and elevation differences between adjacent towers are considered. Several cases with common ice detachment mechanisms are considered, and dynamic responses of the cable and reaction forces of insulators due to ice-shedding are analyzed.

References

1.
Morgan
,
V. T.
, and
Swift
,
D. A.
,
1964
, “
Jump Height of Overhead-Line Conductors After the Sudden Release of Ice Loads
,”
Proc. Inst. Electr. Eng.
,
111
(
10
), pp.
1736
1746
.10.1049/piee.1964.0285
2.
Jamaleddine
,
A.
,
McClure
,
G.
,
Rousselet
,
J.
, and
Beauchemin
,
R.
,
1993
, “
Simulation of Ice-Shedding on Electrical Transmission Lines Using Adina
,”
Comput. Struct.
,
47
(
4–5
), pp.
523
536
.10.1016/0045-7949(93)90339-F
3.
Roshan Fekr
,
M.
, and
McClure
,
G.
,
1998
, “
Numerical Modelling of the Dynamic Response of Ice-Shedding on Electrical Transmission Lines
,”
Atmos. Res.
,
46
(
1–2
), pp.
1
11
.10.1016/S0169-8095(97)00046-X
4.
Kollar
,
L. E.
, and
Farzaneh
,
M.
,
2008
, “
Vibration of Bundled Conductors Following Ice Shedding
,”
IEEE Trans. Power Deliver
,
23
(
2
), pp.
1097
1104
.10.1109/TPWRD.2007.915876
5.
Kollar
,
L. E.
, and
Farzaneh
,
M.
,
2013
, “
Modeling Sudden Ice Shedding From Conductor Bundles
,”
IEEE Trans. Power Deliver
,
28
(
2
), pp.
604
611
.10.1109/TPWRD.2012.2227281
6.
Rui
,
X. M.
,
Ji
,
K. P.
,
Li
,
L.
, and
McClure
,
G.
,
2017
, “
Dynamic Response of Overhead Transmission Lines With Eccentric Ice Deposits Following Shock Loads
,”
IEEE Trans. Power Deliver
,
32
(
3
), pp.
1287
1294
.10.1109/TPWRD.2015.2501029
7.
Yan
,
B.
,
Chen
,
K. Q.
,
Guo
,
Y. M.
,
Liang
,
M.
, and
Yuan
,
Q.
,
2013
, “
Numerical Simulation Study on Jump Height of Iced Transmission Lines After Ice Shedding
,”
IEEE Trans. Power Deliver
,
28
(
1
), pp.
216
225
.10.1109/TPWRD.2012.2219324
8.
Wu
,
C.
,
Yan
,
B.
,
Zhang
,
L.
,
Zhang
,
B.
, and
Li
,
Q.
,
2016
, “
A Method to Calculate Jump Height of Iced Transmission Lines After Ice-Shedding
,”
Cold Reg. Sci. Technol.
,
125
, pp.
40
47
.10.1016/j.coldregions.2016.02.001
9.
Murin
,
J.
,
Hrabovsky
,
J.
,
Gogola
,
R.
, and
Janicek
,
F.
,
2016
, “
Dynamic Analysis of Overhead Power Lines After Ice–Shedding Using Finite Element Method
,”
J. Electr. Eng.
,
67
(
6
), pp.
421
426
.10.1515/jee-2016-0061
10.
Kollar
,
L. E.
,
Farzaneh
,
M.
, and
Van Dyke
,
P.
,
2013
, “
Modeling Ice Shedding Propagation on Transmission Lines With or Without Interphase Spacers
,”
IEEE Trans. Power Deliver
,
28
(
1
), pp.
261
267
.10.1109/TPWRD.2012.2212918
11.
Mirshafiei
,
F.
,
McClure
,
G.
, and
Farzaneh
,
M.
,
2013
, “
Modelling the Dynamic Response of Iced Transmission Lines Subjected to Cable Rupture and Ice Shedding
,”
IEEE Trans. Power Deliver
,
28
(
2
), pp.
948
954
.10.1109/TPWRD.2012.2233221
12.
Ren
,
H.
,
2015
, “
A Simple Absolute Nodal Coordinate Formulation for Thin Beams With Large Deformations and Large Rotations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061005
.10.1115/1.4028610
13.
Wang
,
T. F.
,
Tinsley
,
B.
,
Patel
,
M. D.
, and
Shabana
,
A. A.
,
2018
, “
Nonlinear Dynamic Analysis of Parabolic Leaf Springs Using ANCF Geometry and Data Acquisition
,”
Nonlinear Dyn.
,
93
(
4
), pp.
2487
2515
.10.1007/s11071-018-4338-3
14.
Wang
,
T. F.
,
Yu
,
Z. Q.
, and
Lan
,
P.
,
2019
, “
On the Development of Incomplete Cubic Tetrahedral Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p.
041001
.10.1115/1.4041416
15.
Grossi
,
E.
,
Desai
,
C. J.
, and
Shabana
,
A. A.
,
2019
, “
Development of Geometrically Accurate Continuum-Based Tire Models for Virtual Testing
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
12
), p.
121006
.10.1115/1.4044679
16.
Fu
,
K. J.
,
Zhao
,
Z. H.
,
Ren
,
G. X.
,
Xiao
,
Y.
,
Feng
,
T.
,
Yang
,
J. G.
, and
Gasbarri
,
P.
,
2019
, “
From Multiscale Modeling to Design of Synchronization Mechanisms in Mesh Antennas
,”
Acta Astronaut.
,
159
, pp.
156
165
.10.1016/j.actaastro.2019.03.056
17.
Du
,
X. L.
,
Du
,
J. L.
,
Bao
,
H.
,
Chen
,
X. F.
,
Sun
,
G. H.
, and
Wu
,
X. B.
,
2019
, “
Dynamic Analysis of the Deployment for Mesh Reflector Antennas Driven With Variable Length Cables
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
11
), p.
111006
.10.1115/1.4044315
18.
Htun
,
T. Z.
,
Suzuki
,
H.
, and
García-Vallejo
,
D.
,
2020
, “
Dynamic Modeling of a Radially Multilayered Tether Cable for a Remotely-Operated Underwater Vehicle Based on the Absolute Nodal Coordinate Formulation
,”
Mech. Mach. Theory
,
153
, p.
103961
.10.1016/j.mechmachtheory.2020.103961
19.
Cui
,
Y. Q.
,
Lan
,
P.
,
Zhou
,
H. T.
, and
Yu
,
Z. Q.
,
2020
, “
The Rigid-Flexible-Thermal Coupled Analysis for Spacecraft Carrying Large-Aperture Paraboloid Antenna
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
3
), p.
031003
.10.1115/1.4045890
20.
Shabana
,
A. A.
,
2015
, “
Definition of ANCF Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054506
.10.1115/1.4030369
21.
Pai
,
P. F.
,
2014
, “
Problems in Geometrically Exact Modeling of Highly Flexible Beams
,”
Thin Wall Struct.
,
76
, pp.
65
76
.10.1016/j.tws.2013.11.008
22.
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2008
, “
On the Correct Representation of Bending and Axial Deformation in the Absolute Nodal Coordinate Formulation With an Elastic Line Approach
,”
J Sound Vib.
,
318
(
3
), pp.
461
487
.10.1016/j.jsv.2008.04.019
23.
Zhang
,
Y.
,
Wei
,
C.
,
Zhao
,
Y.
,
Tan
,
C. L.
, and
Liu
,
Y. J.
,
2018
, “
Adaptive ANCF Method and Its Application in Planar Flexible Cables
,”
Acta Mech. Sin.
,
34
(
1
), pp.
199
213
.10.1007/s10409-017-0721-4
24.
Lan
,
P.
,
Li
,
K.
, and
Yu
,
Z. Q.
,
2019
, “
Computer Implementation of Piecewise Cable Element Based on the Absolute Nodal Coordinate Formulation and Its Application in Wire Modeling
,”
Acta Mech.
,
230
(
3
), pp.
1145
1158
.10.1007/s00707-018-2332-y
25.
Ren
,
H.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2018
, “
An Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011012
.10.1115/1.4037513
26.
Kobis
,
M. A.
, and
Arnold
,
M.
,
2016
, “
Convergence of Generalized-α Time Integration for Nonlinear Systems With Stiff Potential Forces
,”
Multibody Syst. Dyn.
,
37
(
1
), pp.
107
125
.10.1007/s11044-015-9495-2
27.
Fan
,
W.
, and
Zhu
,
W.
,
2017
, “
A New Locking-Free Formulation of a Three-Dimensional Shear-Deformable Beam
,”
J. Vib. Acoust.
,
139
(
5
), p.
051001
.10.1115/1.4036210
You do not currently have access to this content.