Abstract

In this paper, an approach based on the integration of computer-aided design and analysis (I-CAD-A) is used to develop new continuum-based finite element (FE) tire models for the small and large deformation analyses. Based on given tire specifications, the mechanics-based geometry/analysis absolute nodal coordinate formulation (ANCF) is used to define the tire geometry with the same degree of accuracy as B-splines and nonuniform rational B-spline (NURBS), widely used in the computer-aided design (CAD) systems. In the case of large deformations, the ANCF geometry can be used directly as the analysis mesh without the need for conversion or adjustments. In order to define the material parameters that characterize the ANCF tire composite structure, a virtual test rig is developed, and the tire calibration process is performed according to the standards defined by the Society of Automotive Engineers (SAE). In order to develop small-deformation models that can be used in the prediction of the tire frequencies and mode shapes, the ANCF position vector gradients are consistently written in terms of rotation parameters, leading to geometrically accurate floating frame of reference (FFR) finite elements, referred to as ANCF/FFR elements. Using this mechanics-based geometry/analysis approach, new geometrically accurate reduced-order tire models are systematically developed and used to define vibration equations for the prediction of the tire frequencies, which are verified using a commercial FE software. The element stiffness matrix is calculated using the general continuum mechanics approach (GCM), and the effectiveness of the strain split method (SSM) for locking alleviation is tested. The results obtained in this investigation show that the I-CAD-A tire modeling approach can be used to develop geometrically accurate tire models suited for the large-deformation multibody system (MBS) problems as well as for the prediction of the tire frequencies and mode shapes.

References

1.
Pacejka
,
H.
,
2005
,
Tire and Vehicle Dynamics
,
Elsevier
,
Oxford, UK
.
2.
Gipser
,
M.
,
2005
, “
FTire: A Physically Based Application-Oriented Tyre Model for Use With Detailed MBS and Finite-Element Suspension Models
,”
Veh. Syst. Dyn.
,
43
(
Suppl. 1
), pp.
76
91
.10.1080/00423110500139940
3.
Lugner
,
P.
,
Pacejka
,
H.
, and
Plöchl
,
M.
,
2005
, “
Recent Advances in Tyre Models and Testing Procedures
,”
Veh. Syst. Dyn.
,
43
(
6–7
), pp.
413
426
.10.1080/00423110500158858
4.
Rauh
,
J.
, and
Mössner-Beigel
,
M.
,
2008
, “
Tyre Simulation Challenges
,”
Veh. Syst. Dyn.
,
46
(
Suppl. 1
), pp.
49
62
.10.1080/00423110701882298
5.
Leister
,
G.
,
2015
, “
The Role of Tyre Simulation in Chassis Development: Challenge and Opportunity
,”
Fourth International Tyre Colloquium
, Guildford, UK, Apr. 20–21, pp.
1
10
.
6.
Neto
,
M. A.
,
Ambr'osio
,
J. A. C.
, and
Leal
,
R. P.
,
2004
, “
Flexible Multibody Systems Models Using Composite Materials Components
,”
Multibody Syst. Dyn.
,
12
(
4
), pp.
385
405
.10.1007/s11044-004-0911-2
7.
Das
,
M.
,
Barut
,
A.
, and
Madenci
,
E.
,
2010
, “
Analysis of Multibody Systems Experiencing Large Elastic Deformations
,”
Multibody Syst. Dyn.
,
23
(
1
), pp.
1
31
.10.1007/s11044-009-9168-0
8.
Shabana
,
A. A.
,
2019
, “
Integration of Computer-Aided Design and Analysis: Application to Multibody Vehicle Systems
,”
Int. J. Veh. Perform.
,
5
(
3
), pp.
300
327
.10.1504/IJVP.2019.100707
9.
Fotland
,
G.
,
Haskins
,
C.
, and
Rølvåg
,
T.
,
2019
, “
Trade Study to Select Best Alternative for Cable and Pulley Simulation for Cranes on Offshore Vessels
,”
Syst. Eng.
, epub.10.1002/sys.21503
10.
Patel
,
M. D.
,
Pappalardo
,
C. M.
,
Wang
,
G.
, and
Shabana
,
A. A.
,
2019
, “
Integration of Geometry and Small and Large Deformation Analysis for Vehicle Modelling: Chassis, and Airless and Pneumatic Tyre Flexibility
,”
Int. J. Veh. Perform.
,
5
(
1
), pp.
90
127
.10.1504/IJVP.2019.097100
11.
Yamashita
,
H.
,
Matsutani
,
Y.
, and
Sugiyama
,
H.
,
2015
, “
Longitudinal Tire Dynamics Model for Transient Braking Analysis: ANCF-LuGre Tire Model
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031003
.10.1115/1.4028335
12.
Patel
,
M.
,
Orzechowski
,
G.
,
Tian
,
Q.
, and
Shabana
,
A. A.
,
2016
, “
A New Multibody System Approach for Tire Modeling Using ANCF Finite Elements
,”
Proc. Inst. Mech. Eng., Part K
,
230
(
1
), pp.
69
84
.10.1177/1464419315574641
13.
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2016
, “
Physics-Based Flexible Tire Model Integrated With LuGre Tire Friction for Transient Braking and Cornering Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031017
.10.1115/1.4032855
14.
Pappalardo
,
C. M.
,
Wallin
,
M.
, and
Shabana
,
A. A.
,
2017
, “
A New ANCF/CRBF Fully Parameterized Plate Finite Element
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031008
.10.1115/1.4034492
15.
He
,
G.
,
Patel
,
M.
, and
Shabana
,
A. A.
,
2017
, “
Integration of Localized Surface Geometry in Fully Parameterized ANCF Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
313
, pp.
966
985
.10.1016/j.cma.2016.10.016
16.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
.10.1007/s00707-018-2131-5
17.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
, 2nd ed.,
Springer
,
New York
.
18.
Abbas
,
L. K.
,
Rui
,
X.
, and
Marzocca
,
P.
,
2015
, “
Aerothermoelastic Analysis of Panel Flutter Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
33
(
2
), pp.
163
178
.10.1007/s11044-014-9410-2
19.
Bulín
,
R.
,
Hajžman
,
M.
, and
Polach
,
P.
,
2017
, “
Nonlinear Dynamics of a Cable–Pulley System Using the Absolute Nodal Coordinate Formulation
,”
Mech. Res. Commun.
,
82
, pp.
21
28
.10.1016/j.mechrescom.2017.01.001
20.
Chen
,
T.
,
Wen
,
H.
,
Hu
,
H.
, and
Jin
,
D.
,
2017
, “
Quasi-Time-Optimal Controller Design for a Rigid-Flexible Multibody System Via Absolute Coordinate-Based Formulation
,”
Nonlinear Dyn.
,
88
(
1
), pp.
623
633
.10.1007/s11071-016-3265-4
21.
Chen
,
Y.
,
Zhang
,
D.
, and
Li
,
L.
,
2019
, “
Dynamic Analysis of Rotating Curved Beams by Using Absolute Nodal Coordinate Formulation Based on Radial Point Interpolation Method
,”
J. Sound Vib.
,
441
, pp.
63
83
.10.1016/j.jsv.2018.10.011
22.
Chen
,
Y.
,
Zhang
,
D.
, and
Li
,
L.
,
2019
, “
Dynamics Analysis of a Rotating Plate With a Setting Angle by Using the Absolute Nodal Coordinate Formulation
,”
Eur. J. Mech.-A/Solids
,
74
, pp.
257
271
.10.1016/j.euromechsol.2018.11.018
23.
Ham
,
S. H.
,
Roh
,
M. I.
, and
Hong
,
J. W.
,
2017
, “
Dynamic Effect of a Flexible Riser in a Fully Connected Semisubmersible Drilling Rig Using the Absolute Nodal Coordinate Formulation
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
5
), pp.
051705
051710
.10.1115/1.4037084
24.
Heidari
,
H. R.
,
Korayem
,
M. H.
, and
Haghpanahi
,
M.
,
2015
, “
Maximum Allowable Load of Very Flexible Manipulators by Using Absolute Nodal Coordinate
,”
Aerosp. Sci. Technol.
,
45
, pp.
67
77
.10.1016/j.ast.2015.04.018
25.
Hyldahl
,
P.
,
Andersen
,
S.
,
Mikkelsen
,
S.
, and
Balling
,
O.
,
2015
, “
Modeling and Feasibility Study of Nonlinear Suspension Components in Multibody Systems Using Absolute Nodal Coordinate Formulation Based Beam Elements-Application to Stabilizer Bar
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
8
(
2
), pp.
449
459
.10.4271/2015-01-0642
26.
Jia
,
S. S.
, and
Song
,
Y. M.
,
2015
, “
Elastic Dynamic Analysis of Synchronous Belt Drive System Using Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1393
1410
.10.1007/s11071-015-2076-3
27.
Lan
,
P.
,
Li
,
K.
, and
Yu
,
Z.
,
2019
, “
Computer Implementation of Piecewise Cable Element Based on the Absolute Nodal Coordinate Formulation and Its Application in Wire Modeling
,”
Acta Mech.
,
230
(
3
), pp.
1145
1158
.10.1007/s00707-018-2332-y
28.
Li
,
Q.
,
Deng
,
Z.
,
Zhang
,
K.
, and
Huang
,
H.
,
2018
, “
Unified Modeling Method for Large Space Structures Using Absolute Nodal Coordinate
,”
AIAA J.
,
56
(
10
), pp.
4146
4157
.10.2514/1.J057117
29.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2019
, “
Versatile Absolute Nodal Coordinate Formulation Model for Dynamic Folding Wing Deployment and Flutter Analyses
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011014
.10.1115/1.4041022
30.
Shen
,
Z.
,
Tian
,
Q.
,
Liu
,
X.
, and
Hu
,
G.
,
2013
, “
Thermally Induced Vibrations of Flexible Beams Using Absolute Nodal Coordinate Formulation
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
386
393
.10.1016/j.ast.2013.04.009
31.
Sun
,
X.
,
Xu
,
M.
, and
Zhong
,
R.
,
2017
, “
Dynamic Analysis of the Tether Transportation System Using Absolute Nodal Coordinate Formulation
,”
Acta Astronaut.
,
139
, pp.
266
277
.10.1016/j.actaastro.2017.07.020
32.
Tur
,
M.
,
García
,
E.
,
Baeza
,
L.
, and
Fuenmayor
,
F. J.
,
2014
, “
A 3D Absolute Nodal Coordinate Finite Element Model to Compute the Initial Configuration of a Railway Catenary
,”
Eng. Struct.
,
71
, pp.
234
243
.10.1016/j.engstruct.2014.04.015
33.
Yang
,
C. J.
,
Zhang
,
W. H.
,
Zhang
,
J.
,
Mei
,
G. M.
,
Zhou
,
N.
, and
Ren
,
G. X.
,
2017
, “
Static Form-Finding Analysis of a Railway Catenary Using a Dynamic Equilibrium Method Based on Flexible Multibody System Formulation With Absolute Nodal Coordinates and Controls
,”
Multibody Syst. Dyn.
,
39
(
3
), pp.
221
247
.10.1007/s11044-016-9522-y
34.
Yu
,
H.
,
Zhao
,
C.
,
Zheng
,
B.
, and
Wang
,
H.
,
2018
, “
A New Higher-Order Locking-Free Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
19
), pp.
3410
3423
.10.1177/0954406217736550
35.
Zemljarič
,
B.
, and
Ažbe
,
V.
,
2019
, “
Analytically Derived Matrix End-Form Elastic-Forces Equations for a Low-Order Cable Element Using the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
446
, pp.
263
272
.10.1016/j.jsv.2019.01.039
36.
Dufva
,
K.
,
Kerkkänen
,
K.
,
Maqueda
,
L. G.
, and
Shabana
,
A. A.
,
2007
, “
Nonlinear Dynamics of Three-Dimensional Belt Drives Using the Finite-Element Method
,”
Nonlinear Dyn.
,
48
(
4
), pp.
449
466
.10.1007/s11071-006-9098-9
37.
Tian
,
Q.
,
Chen
,
L. P.
,
Zhang
,
Y. Q.
, and
Yang
,
J. Z.
,
2009
, “
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), pp.
021009
021014
.10.1115/1.3079783
38.
Maqueda
,
L. G.
,
Mohamed
,
A. N. A.
, and
Shabana
,
A. A.
,
2010
, “
Use of General Nonlinear Material Models in Beam Problems: Application to Belts and Rubber Chains
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), pp.
021003
021010
.10.1115/1.4000795
39.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), pp.
031016
03101612
.10.1115/1.4023487
40.
Kulkarni
,
S.
,
Pappalardo
,
C. M.
, and
Shabana
,
A. A.
,
2017
, “
Pantograph/Catenary Contact Formulations
,”
ASME J. Vib. Acoust.
,
139
(
1
), pp.
1
12
.10.1115/1.4035132
41.
Grossi
,
E.
, and
Shabana
,
A. A.
,
2017
, “
Verification of a Total Lagrangian ANCF Solution Procedure for Fluid-Structure Interaction Problems
,”
J. Verif. Validation Uncertainty Quantif.
,
2
(
4
), pp.
1
13
.10.1115/1.4038904
42.
Grossi
,
E.
, and
Shabana
,
A. A.
,
2018
, “
ANCF Analysis of the Crude Oil Sloshing in Railroad Vehicle Systems
,”
J. Sound Vib.
,
433
, pp.
493
516
.10.1016/j.jsv.2018.06.035
43.
Atif
,
M. M.
,
Chi
,
S. W.
,
Grossi
,
E.
, and
Shabana
,
A. A.
,
2019
, “
Evaluation of Breaking Wave Effects in Liquid Sloshing Problems: ANCF/SPH Comparative Study
,”
Nonlinear Dyn.
,
97
(
1
) pp.
1
18
.10.1007/s11071-019-04927-5
44.
Shabana
,
A. A.
,
2014
, “
ANCF Reference Node for Multibody System Applications
,”
IMechE J. Multibody Dyn.
, 229(1), pp.
109
112
.
45.
Shabana
,
A. A.
,
2015
, “
ANCF Tire Assembly Model for Multibody System Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
024504
.10.1115/1.4028479
46.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2011
, “
Dynamics of Large Scale Rigid-Flexible Multibody System Composed of Composite Laminated Plates
,”
Multibody Syst Dyn.
,
26
(
3
), pp.
283
305
.10.1007/s11044-011-9256-9
47.
Grossi
,
E.
, and
Shabana
,
A. A.
,
2019
, “
Analysis of High-Frequency ANCF Modes: Navier–Stokes Physical Damping and Implicit Numerical Integration
,”
Acta Mech.
,
230
(
7
), pp.
2581
2605
.10.1007/s00707-019-02409-8
48.
Li
,
B.
,
Yang
,
X.
,
Yang
,
J.
,
Zhang
,
Y.
, and
Ma
,
Z.
,
2017
, “
Parameter Identification of in-Plane Flexible Ring Tyre Model Based on Static Load-Deflection Data: Some Insights
,”
Int. J. Veh. Perform.
,
3
(
2
), pp.
180
197
.10.1504/IJVP.2017.083365
49.
Umsrithong
,
A.
, and
Sandu
,
C.
,
2012
, “
Parameter Identification and Experimental Validation of a Discrete Mass Tire Model for Uneven Rigid Terrain
,”
ASME
Paper No. DETC2012-70674.10.1115/DETC2012-70674
50.
Gallrein
,
A.
,
De Cuyper
,
J.
,
Dehandschutter
,
W.
, and
Bäcker
,
M.
,
2005
, “
Parameter Identification for LMS CDTire
,”
Veh. Syst. Dyn.
,
43
(
Suppl. 1
), pp.
444
456
.10.1080/00423110500230053
51.
Braghin
,
F.
,
Cheli
,
F.
,
Melzi
,
S.
, and
Resta
,
F.
,
2005
, “
Sensitivity Analysis of the Tyre Design Parameters With Respect to Tyre Wear Using a Physical Tyre Model
,”
Veh. Syst. Dyn.
,
43
(
Suppl. 1
), pp.
102
110
.10.1080/00423110500109034
52.
Braghin
,
F.
,
Cheli
,
F.
,
Melzi
,
S.
, and
Resta
,
F.
,
2006
, “
Tyre Wear Model: Validation and Sensitivity Analysis
,”
Meccanica
,
41
(
2
), pp.
143
156
.10.1007/s11012-005-1058-9
53.
Mastinu
,
G.
, and
Pairana
,
E.
,
1992
, “
Parameter Identification and Validation of a Pneumatic Tyre Model
,”
Veh. Syst. Dyn.
,
21
(
Suppl. 1
), pp.
58
81
.10.1080/00423119208969999
54.
Society of Automotive Engineers
,
2018
, “
Tire Normal Force/Deflection and Gross Footprint Dimension Test
,” Vehicle Dynamics Standards Committee, Warrendale, PA, Standard No. SAE J2704.
55.
Society of Automotive Engineers
,
2018
, “
Tire Quasi-Static Envelopment of Triangular/Step Cleats Test
,” Vehicle Dynamics Standards Committee, Warrendale, PA, Standard No. SAE J2705.
56.
Society of Automotive Engineers
,
2017
, “
Modal Testing and Identification of Lower Order Tire Natural Frequencies of Radial Tires
,” Vehicle Dynamics Standards Committee, Warrendale, PA, Standard No. SAE J2710.
57.
Society of Automotive Engineers
,
2018
, “
Tests to Define Tire Size (Geometry), Mass, Inertias
,” Vehicle Dynamics Standards Committee, Warrendale, PA, Standard No. SAE J2717.
58.
Society of Automotive Engineers
,
2018
, “
Test for Tire Quasi-Static Longitudinal Force Versus Longitudinal Displacement and Quasi-Static Lateral Force Versus Lateral Force
,” Vehicle Dynamics Standards Committee, Warrendale, PA, Standard No. SAE J2718.
59.
Society of Automotive Engineers
,
2013
, “
Dynamic Cleat Test With Perpendicular and Inclined Cleats
,” Vehicle Dynamics Standards Committee, Warrendale, PA, Standard No. SAE J2730.
60.
Society of Automotive Engineers
,
2018
, “
Low Speed Enveloping Test With Perpendicular and Inclined Cleats
,” Vehicle Dynamics Standards Committee, Warrendale, PA, Standard No. SAE J2731.
61.
Wang
,
G.
, and
Roque
,
R.
,
2010
, “
Three-Dimensional Finite Element Modeling of Static Tire-Pavement Interaction
,”
Transp. Res. Rec.
,
2155
(
1
), pp.
158
169
.10.3141/2155-17
62.
Wang
,
T.
,
Tinsley
,
B.
,
Patel
,
M. D.
, and
Shabana
,
A. A.
,
2018
, “
Nonlinear Dynamic Analysis of Parabolic Leaf Springs Using ANCF Geometry and Data Acquisition
,”
Nonlinear Dyn.
,
93
(
4
), pp.
2487
2515
.10.1007/s11071-018-4338-3
63.
Goldstein
,
H.
,
1950
,
Classical Mechanics
,
Addison-Wesley
,
San Francisco, CA
.
64.
Greenwood
,
D. T.
,
1988
,
Principles of Dynamics
,
Prentice Hall
,
Englewood Cliffs, NJ
.
65.
Roberson
,
R. E.
, and
Schwertassek
,
R.
,
1988
,
Dynamics of Multibody Systems
,
Springer-Verlag
,
London
.
66.
Shabana
,
A. A.
,
2018
, “
Geometrically Accurate Floating Frame of Reference Finite Elements for the Small Deformation Problem
,”
Proc. Inst. Mech. Eng., Part K
,
232
(
2
), pp.
286
292
.10.1177/1464419317731392
67.
Zhang
,
Z.
,
Wang
,
T.
, and
Shabana
,
A. A.
,
2019
, “
Development and Implementation of Geometrically Accurate Reduced-Order Models: Convergence Properties of Planar Beams
,”
J. Sound Vib.
,
439
, pp.
457
478
.10.1016/j.jsv.2018.06.005
68.
Tinsley
,
B.
, and
Shabana
,
A. A.
,
2019
, “
Eigenvalue Convergence of the Geometrically Accurate Spatial Beam, Plate, and Solid Elements
,” Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, IL, Report No. MBS2019-1-UIC.
69.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2003
, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications
,”
Multibody Syst. Dyn.
,
9
(
3
), pp.
283
309
.10.1023/A:1022950912782
70.
Wan
,
X.
,
Liu
,
X.
,
Shan
,
Y.
,
Jiang
,
E.
, and
Yuan
,
H.
,
2019
, “
Numerical and Experimental Investigation on the Effect of Tire on the 13° Impact Test of Automotive Wheel
,”
Adv. Eng. Software
,
133
, pp.
20
27
.10.1016/j.advengsoft.2019.04.005
71.
Deng
,
Y. J.
,
Zhao
,
Y. Q.
,
Xu
,
H.
,
Zhu
,
M. M.
, and
Xiao
,
Z.
,
2019
, “
Finite Element Modeling of Interaction Between Non-Pneumatic Mechanical Elastic Wheel and Soil
,”
Proc. Inst. Mech. Eng., Part D
, epub. 10.1177/0954407018821555
72.
Nyaaba
,
W.
,
Bolarinwa
,
E. O.
, and
Frimpong
,
S.
,
2019
, “
Durability Prediction of an Ultra-Large Mining Truck Tire Using an Enhanced Finite Element Method
,”
Proc. Inst. Mech. Eng., Part D
,
233
(
1
), pp.
161
169
.10.1177/0954407018795278
73.
Ghoreishy
,
M.
,
2006
, “
Steady State Rolling Analysis of a Radial Tyre: Comparison With Experimental Results
,”
Proc. Inst. Mech. Eng. Part D
,
220
(
6
), pp.
713
721
.10.1243/09544070JAUTO268
You do not currently have access to this content.