Abstract

Herein, analytical solutions of three-dimensional (3D) diffusion, telegraph, and Burgers' models that are equipped with three memory indices are derived by using an innovative fractional generalization of the traditional differential transform method (DTM), namely, the threefold-fractional differential transform method (threefold-FDTM). This extends the applicability of DTM to comprise initial value problems in higher fractal spaces. The obtained solutions are expressed in the form of a γ¯-fractional power series which is a fractional adaptation of the classical Taylor series in several variables. Furthermore, the projection of these solutions into the integer space corresponds with the solutions of the classical copies for these models. The results detect that the suggested method is easy to implement, accurate, and very efficient in (non)linear fractional models. Thus, research on this trend is worth tracking.

References

1.
Nigmatullin
,
R. R.
,
1986
, “
The Realization of the Generalized Transfer Equation in a Medium With Fractal Geometry
,”
Phys. Status Solidi B
,
133
(
1
), pp.
425
430
.10.1002/pssb.2221330150
2.
Saichev
,
A. I.
, and
Zaslavsky
,
G. M.
,
1997
, “
Fractional Kinetic Equations: Solutions and Applications
,”
Chaos
,
7
(
4
), pp.
753
764
.10.1063/1.166272
3.
Cascaval
,
R. C.
,
Eckstein
,
E. C.
,
Frota
,
C. L.
, and
Goldstein
,
J. A.
,
2002
, “
Fractional Telegraph Equations
,”
J. Math. Anal. Appl.
,
276
(
1
), pp.
145
159
.10.1016/S0022-247X(02)00394-3
4.
Sugimoto
,
N.
,
1991
, “
Burgers Equation With a Fractional Derivative; Hereditary Effects on Nonlinear Acoustic Waves
,”
J. Fluid Mech.
,
225
, pp.
631
653
.10.1017/S0022112091002203
5.
Du
,
M.
,
Wang
,
Z.
, and
Hu
,
H.
,
2013
, “
Measuring Memory With the Order of Fractional Derivative
,”
Sci. Rep.
,
3
, p.
3431
.10.1038/srep03431
6.
Jaradat
,
I.
,
Al-Dolat
,
M.
,
Al-Zoubi
,
K.
, and
Alquran
,
M.
,
2018
, “
Theory and Applications of a More General Form for Fractional Power Series Expansion
,”
Chaos, Solitons Fractals
,
108
, pp.
107
110
.10.1016/j.chaos.2018.01.039
7.
Alquran
,
M.
, and
Jaradat
,
I.
,
2018
, “
A Novel Scheme for Solving Caputo Time-Fractional Nonlinear Equations: Theory and Application
,”
Nonlinear Dyn.
,
91
(
4
), pp.
2389
2395
.10.1007/s11071-017-4019-7
8.
Jaradat
,
I.
,
Alquran
,
M.
, and
Al-Khaled
,
K.
,
2018
, “
An Analytical Study of Physical Models With Inherited Temporal and Spatial Memory
,”
Eur. Phys. J. Plus
,
133
, p.
162
.10.1140/epjp/i2018-12007-1
9.
Jaradat
,
I.
,
Alquran
,
M.
, and
Abdel-Muhsen
,
R.
,
2018
, “
An Analytical Framework of 2D Diffusion, Wave-Like, Telegraph, and Burgers' Models With Twofold Caputo Derivatives Ordering
,”
Nonlinear Dyn.
,
93
(
4
), pp.
1911
1192
.10.1007/s11071-018-4297-8
10.
Alquran
,
M.
,
Jaradat
,
I.
, and
Sivasundaram
,
S.
,
2018
, “
Elegant Scheme for Solving Caputo-Time-Fractional Integro-Differential Equations
,”
Nonlinear Stud.
,
25
(
2
), pp.
385
393
.
11.
Jaradat
,
I.
,
Alquran
,
M.
, and
Al-Dolat
,
M.
,
2018
, “
Analytic Solution of Homogeneous Time-Invariant Fractional IVP
,”
Adv. Differ. Equations
,
2018
, p.
143
.10.1186/s13662-018-1601-3
12.
Wharmby
,
A. W.
, and
Bagley
,
R. L.
,
2013
, “
Generalization of a Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
57
(
5
), p.
1429
.10.1122/1.4819083
13.
Zhou
,
J. K.
,
1986
,
Differential Transform and Its Applications for Electrical Circuits
,
Huazhong University Press
,
Wuhan, China
.
14.
Chen
,
C. K.
, and
Ho
,
S. H.
,
1999
, “
Solving Partial Differential Equations by Two-Dimensional Differential Transform Method
,”
Appl. Math. Comput.
,
106
(
2–3
), pp.
171
179
.10.1016/S0096-3003(98)10115-7
15.
Ayaz
,
F.
,
1999
, “
Solutions of the System of Differential Equations by Differential Transform Method
,”
Appl. Math. Comput.
,
147
(
2
), pp.
547
567
.10.1016/S0096-3003(02)00794-4
16.
Arikoglu
,
A.
, and
Ozkol
,
I.
,
2007
, “
Solution of Fractional Differential Equations by Using Differential Transform Method
,”
Chaos, Solitons Fractals
,
34
(
5
), pp.
1473
1481
.10.1016/j.chaos.2006.09.004
17.
Jaradat
,
I.
,
Alquran
,
M.
,
Yousef
,
F.
,
Momani
,
S.
, and
Baleanu
,
D.
,
2019
, “
An Avant-Garde Handling of Temporal-Spatial Fractional Physical Models
,”
Int. J. Nonlinear Sci. Numer. Simul.
(in press).
18.
Jaradat
,
I.
,
Alquran
,
M.
,
Yousef
,
F.
,
Momani
,
S.
, and
Baleanu
,
D.
,
2019
, “
On (2 + 1)-Dimensional Physical Models Endowed With Decoupled Spatial and Temporal Memory Indices
,”
Eur. Phys. J. Plus
,
134
, p.
360
.10.1140/epjp/i2019-12769-8
19.
Yousef
,
F.
,
Alquran
,
M.
,
Jaradat
,
I.
,
Momani
,
S.
, and
Baleanu
,
D.
,
2019
, “
Ternary-Fractional Differential Transform Schema: Theory and Application
,”
Adv. Differ. Equations
,
2019
, p.
197
.10.1186/s13662-019-2137-x
20.
Alquran
,
M.
,
Jaradat
,
I.
, and
Abdel-Muhsen
,
R.
,
2018
, “
Embedding (3 + 1)-Dimensional Diffusion, Telegraph, and Burgers' Equations Into Fractal 2D and 3D Spaces: An Analytical Study
,”
J. King Saud Univ., Sci.
(in press). 10.1016/j.jksus.2018.05.024
You do not currently have access to this content.