Abstract

In this paper, we implement the local fractional natural homotopy perturbation method (LFNHPM) to solve certain local fractional partial differential equations (LFPDEs) with fractal initial conditions occurring in physical sciences in a fractal domain. LFPDEs successfully exhibit the important properties of physical models occurring in a fractal medium. The working methodology depicts the feasibility and accuracy of the implemented approach for given LFPDEs. Moreover, the solutions for LFPDEs are obtained in a closed form and are in good agreement with the previously determined results. The numerical simulations are also investigated for each of the LFPDE on Cantor set. The implementation of the method in view of numerical simulations authenticates that the applied method is precise, and useful to investigate the solutions of partial differential equations with local fractional derivatives.

References

1.
Ross
,
B.
,
1975
, “
A Brief History and Exposition of the Fundamental Theory of Fractional Calculus
,”
Fractional Calculus and Its Applications
,
Ross
,
B.
eds.,
Springer-Verlag
,
Berlin, Heidelberg
.
2.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
3.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
4.
Hilfer
,
R.
,
1999
,
Applications of Fractional Calculus in Physics
,
Academic Press
,
Orlando, FL
.
5.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Application of Fractional Differential Equations
,
Elsevier
, Amsterdam, The
Netherlands
.
6.
Liao
,
S. J.
,
1992
,
The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems
, Ph.D. thesis,
Shanghai Jiao Tong University
,
China
.
7.
He
,
J.-H.
,
1999
, “
Homotopy Perturbation Technique
,”
Comp. Math. Appl. Mech. Eng
,.,
178
(
3–4
), pp.
257
262
.10.1016/S0045-7825(99)00018-3
8.
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
,
Dubey
,
S.
, and
Kumar
,
D.
,
2022
, “
Numerical Investigation of Fractional Model of Phytoplankton–Toxic Phytoplankton–Zooplankton System With Convergence Analysis
,”
Int. J. Biomath.
,
15
(
04
), p.
2250006
.10.1142/S1793524522500061
9.
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
,
Dubey
,
S.
, and
Kumar
,
D.
,
2022
, “
Forecasting the Behavior of Fractional Order Bloch Equations Appearing in NMR Flow Via a Hybrid Computational Technique
,”
Chaos Solitons Fract.
,
164
, p.
112691
.10.1016/j.chaos.2022.112691
10.
Dubey
,
V. P.
,
Kumar
,
D.
, and
Dubey
,
S.
,
2021
, “
A Modified Computational Scheme and Convergence Analysis for Fractional Order Hepatitis E Virus Model
,”
Book: Advanced Numerical Methods for Differential Equations: Applications in Science and Engineering
,
CRC Press, Taylor & Francis Group
, Boca Raton, London, New York, pp.
279
312
.
11.
Prakasha
,
D. G.
,
Malagi
,
N. S.
, and
Veeresha
,
P.
,
2020
, “
New Approach for Fractional Schrödinger-Boussinesq Equations With Mittag-Leffler Kernel
,”
Math. Meth. Appl. Sci.
,
43
(
17
), pp.
9654
9670
.10.1002/mma.6635
12.
Algehyne
,
E. A.
, and
Ibrahim
,
M.
,
2021
, “
Fractal-Fractional Order Mathematical Vaccine Model of COVID-19 Under Non-Singular Kernel
,”
Chaos Solitons Fract.
,
150
, p.
111150
.10.1016/j.chaos.2021.111150
13.
Baskonus
,
H. M.
, and
Gao
,
W.
,
2022
, “
Investigation of Optical Solitons to the Nonlinear Complex Kundu–Eckhaus and Zakharov–Kuznetsov–Benjamin–Bona–Mahony Equations in Conformable
,”
Opt. Quant. Electron.
,
54
(
6
), pp.
1
23
.
14.
Gao
,
W.
, and
Baskonus
,
H. M.
,
2022
, “
Deeper Investigation of Modified Epidemiological Computer Virus Model Containing the Caputo Operator
,”
Chaos Solitons Fract.
,
158
, p.
112050
.10.1016/j.chaos.2022.112050
15.
Tanriverdi
,
T.
,
Baskonus
,
H. M.
,
Mahmud
,
A. A.
, and
Muhamad
,
K. A.
,
2021
, “
Explicit Solution of Fractional Order Atmosphere-Soil-Land Plant Carbon Cycle System
,”
Ecol. Complex.
,
48
, p.
100966
.10.1016/j.ecocom.2021.100966
16.
Wang
,
G.
,
Yang
,
K.
,
Gu
,
H.
,
Guan
,
F.
, and
Kara
,
A. H.
,
2020
, “
A (2 + 1)-Dimensional Sine-Gordon and Sinh-Gordon Equations With Symmetries and Kink Wave Solutions
,”
Nucl. Phys. B
,
953
, p.
114956
.10.1016/j.nuclphysb.2020.114956
17.
Wang
,
G.
,
2021
, “
A New (3 + 1)-Dimensional Schrödinger Equation: Derivation, Soliton Solutions and Conservation Laws
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1595
1602
.10.1007/s11071-021-06359-6
18.
Wang
,
G.
,
2021
, “
Symmetry Analysis, Analytical Solutions and Conservation Laws of a Generalized KdV-Burgers-Kuramoto Equation and Its Fractional Version
,”
Fractals
,
29
(
04
), p.
2150101
.10.1142/S0218348X21501012
19.
Wang
,
G.
, and
Wazwaz
,
A. M.
,
2022
, “
On the Modified Gardner Type Equation and Its Time Fractional Form
,”
Chaos Solitons Fract.
,
155
, p.
111694
.10.1016/j.chaos.2021.111694
20.
Wang
,
G.
, and
Wazwaz
,
A. M.
,
2022
, “
A New (3 + 1)-Dimensional KdV Equation and mKdV Equation With Their Corresponding Fractional Forms
,”
Fractals
,
30
(
04
), p.
2250081
.10.1142/S0218348X22500815
21.
Yang
,
X.-J.
,
Baleanu
,
D.
, and
Zhong
,
W.-P.
,
2013
, “
Approximate Solutions for Diffusion Equations on Cantor Space-Time
,”
Proc. Rom. Acad. Ser. A
,
14
(
2
), pp.
127
133
.
22.
Yang
,
X.-J.
,
2011
,
Local Fractional Functional Analysis and Its Applications
,
Asian Academic
,
Hong Kong, China
.
23.
Yang
,
X.-J.
,
2012
,
Advanced Local Fractional Calculus and Its Applications
,
World Science
,
New York
.
24.
Kolwankar
,
K. M.
, and
Gangal
,
A. D.
,
1998
, “
Local Fractional Fokker-Planck Equation
,”
Phys. Rev. Lett.
,
80
(
2
), pp.
214
217
.10.1103/PhysRevLett.80.214
25.
Babakhani
,
A.
, and
Daftardar-Gejji
,
V.
,
2002
, “
On Calculus of Local Fractional Derivatives
,”
J. Math. Anal. Appl.
,
270
(
1
), pp.
66
79
.10.1016/S0022-247X(02)00048-3
26.
Carpinteri
,
A.
,
Chiaia
,
B.
, and
Cornetti
,
P.
,
2004
, “
The Elastic Problem for Fractal Media: Basic Theory and Finite Element Formulation
,”
Comput. Struct.
,
82
(
6
), pp.
499
508
.10.1016/j.compstruc.2003.10.014
27.
Chen
,
Y.
,
Yan
,
Y.
, and
Zhang
,
K.
,
2010
, “
On the Local Fractional Derivative
,”
J. Math. Anal. Appl.
,
362
(
1
), pp.
17
33
.10.1016/j.jmaa.2009.08.014
28.
Ma
,
X.-J.
,
Srivastava
,
H. M.
,
Baleanu
,
D.
, and
Yang
,
X.-J.
,
2013
, “
A New Neumann Series Method for Solving a Family of Local Fractional Fredholm and Volterra Integral Equations
,”
Math. Probl. Eng.
,
2013
, pp.
1
6
.10.1155/2013/325121
29.
Yang
,
X.-J.
,
Baleanu
,
D.
, and
Machado
,
J. A. T.
,
2013
, “
Systems of Navier-Stokes Equations on Cantor Sets
,”
Math. Probl. Eng.
,
2013
, pp.
1
8
.10.1155/2013/769724
30.
Yang
,
A.-M.
,
Yang
,
X.-J.
, and
Li
,
Z.-B.
,
2013
, “
Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets
,”
Abstr. Appl. Anal.
,
2013
, pp.
1
5
.10.1155/2013/351057
31.
Golmankhaneh
,
A. K.
,
Fazlollahi
,
V.
, and
Baleanu
,
D.
,
2013
, “
Newtonian Mechanics on Fractals Subset of Real-Line
,”
Rom. Rep. Phys.
,
65
(
1
), pp.
84
93
.
32.
He
,
J.-H.
,
2013
, “
Local Fractional Variational Iteration Method for Fractal Heat Transfer in Silk Cocoon Hierarchy
,”
Nonlinear Sci. Lett. A
,
4
(
1
), pp.
15
20
.
33.
Deng
,
S.-X.
, and
Ge
,
X.-X.
,
2021
, “
Analytical Solution to Local Fractional Landau-Ginzburg-Higgs Equation on Fractal Media
,”
Therm. Sci.
,
25
(
6 Part B
), pp.
4449
4455
.10.2298/TSCI2106449D
34.
Liu
,
J.-G.
,
Yang
,
X.-J.
,
Feng
,
Y.-Y.
, and
Cui
,
P.
,
2020
, “
A New Perspective to Study the Third-Order Modified KDV Equation on Fractal Set
,”
Fractals
,
28
(
06
), p.
2050110
.10.1142/S0218348X20501108
35.
Baleanu
,
D.
,
Jassim
,
H. K.
, and
Al-Qurashi
,
M.
,
2019
, “
Solving Helmholtz Equation With Local Fractional Derivative Operators
,”
Fractal Fract.
,
3
(
3
), p.
43
.10.3390/fractalfract3030043
36.
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
,
Dubey
,
S.
, and
Kumar
,
D.
,
2021
, “
A Comparative Analysis of Two Computational Schemes for Solving Local Fractional Laplace Equations
,”
Math. Meth. Appl. Sci.
,
44
(
17
), pp.
13540
13559
.10.1002/mma.7642
37.
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
,
Dubey
,
S.
, and
Kumar
,
D.
,
2022
, “
A Hybrid Computational Method for Local Fractional Dissipative and Damped Wave Equations in Fractal Media
,”
Waves Random Complex Media
, epub, pp.
1
23
.10.1080/17455030.2022.2049395
38.
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
,
Dubey
,
S.
, and
Kumar
,
D.
,
2022
, “
An Efficient Analytical Scheme With Convergence Analysis for Computational Study of Local Fractional Schrödinger Equations
,”
Math. Comput. Simul.
,
196
, pp.
296
318
.10.1016/j.matcom.2022.01.012
39.
Dubey
,
S.
,
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
, and
Kumar
,
D.
,
2022
, “
Computational Study of a Local Fractional Tricomi Equation Occurring in Fractal Transonic Flow
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
081006
.10.1115/1.4054482
40.
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
,
Dubey
,
S.
, and
Kumar
,
D.
,
2022
, “
Analysis of Local Fractional Coupled Helmholtz and Coupled Burgers' Equations in Fractal Media
,”
AIMS Math.
,
7
(
5
), pp.
8080
8111
.10.3934/math.2022450
41.
Maitama
,
S.
,
2018
, “
Local Fractional Natural Homotopy Perturbation Method for Solving Partial Differential Equations With Local Fractional Derivative
,”
Prog. Fract. Differ. Appl.
,
4
(
3
), pp.
219
228
.10.18576/pfda/040306
42.
Yang
,
X.-J.
,
Srivastava
,
H. M.
, and
Cattani
,
C.
,
2015
, “
Local Fractional Homotopy Perturbation Method for Solving Fractal Partial Differential Equations Arising in Mathematical Physics
,”
Rom. Rep. Phys.
,
67
(
3
), pp.
752
761
.https://www.researchgate.net/publication/270104433_Local_fractional_homotopy_perturbation_method_for_solving_fractal_partial_differential_equations_arising_in_mathematical_physics
43.
Zhang
,
Y.
,
Cattani
,
C.
, and
Yang
,
X.-J.
,
2015
, “
Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domains
,”
Entropy
,
17
(
12
), pp.
6753
6764
.10.3390/e17106753
44.
Dubey
,
V. P.
,
Kumar
,
D.
,
Singh
,
J.
,
Alshehri
,
A. M.
, and
Dubey
,
S.
,
2022
, “
Analysis of Local Fractional Klein-Gordon Equations Arising in Relativistic Fractal Quantum Mechanics
,”
Waves Random Complex Media
, epub, pp.
1
21
.10.1080/17455030.2022.2112993
45.
Dubey
,
V. P.
,
Kumar
,
D.
,
Alshehri
,
H. M.
,
Dubey
,
S.
, and
Singh
,
J.
,
2022
, “
Computational Analysis of Local Fractional LWR Model Occurring in a Fractal Vehicular Traffic Flow
,”
Fractal Fract.
,
6
(
8
), p.
426
.10.3390/fractalfract6080426
46.
Jafari
,
H.
,
Jassim
,
H. K.
,
Al Qurashi
,
M.
, and
Baleanu
,
D.
,
2016
, “
On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations
,”
Entropy
,
18
(
11
), pp.
420
429
.10.3390/e18110420
47.
Yang
,
Y. J.
, and
Hua
,
L. Q.
,
2014
, “
Variational Iteration Transform Method for Fractional Differential Equations With Local Fractional Derivative
,”
Abstr. Appl. Anal.
,
2014
, pp.
1
9
.10.1155/2014/760957
48.
Ziane
,
D.
,
Baleanu
,
D.
,
Belghaba
,
K.
, and
Cherif
,
M.
,
2019
, “
Local Fractional Sumudu Decomposition Method for Linear Partial Differential Equations With Local Fractional Derivative
,”
J. King Saud Univ. Sci.
,
31
(
1
), pp.
83
88
.10.1016/j.jksus.2017.05.002
You do not currently have access to this content.