Abstract

The paper investigates the bifurcations encountered in a simple rotor dynamic system interacting with nonlinear impedance forces, generated by the supporting journal bearings of realistic profile geometry. Bearing configurations of finite arc length and of finite width, as implemented in standard design of turbomachinery have been selected, namely, the cylindrical partial arc and the elliptical (lemon) bore profile. The way in which the key design parameters influence the stability of elastic or rigid Jeffcott rotor is discussed. In the scope of this study, the following bearing design parameters are considered: arc length, length to diameter ratio, geometric preload and offset, and properties of the supporting pedestal by codimension-two studies. The bearing model is coupled to a six degree-of-freedom shaft-disk-pedestal model with nonlinear forces calculated from the journal kinematics, bearing design and operating conditions by numerical evaluation of the Reynolds equation for laminar, isothermal flow on a two-dimensional mesh. An autonomous system of differential equations is implemented. Stability of fixed points and of limit cycles for this system is evaluated applying numerical continuation. The results confirm that minor variations in journal bearing design and pedestal properties have the potential to render substantial changes in the quality of stability and the bifurcation set of the rotor dynamic system. Specific bearing profiles render significant increment of instability threshold speed while at the same time supercritical Hopf bifurcations can be shifted to subcritical with resulting instability envelopes to be generated at speeds lower than the threshold speed.

References

1.
Lund
,
J. W.
, and
Saibel
,
E.
,
1967
, “
Oil Whip Whirl Orbits of a Rotor in Sleeve Bearings
,”
J. Eng. Ind.
,
89
(
4
), pp.
813
821
.10.1115/1.3610159
2.
Lund
,
J. W.
,
1974
, “
Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings
,”
J. Eng. Ind.
,
96
(
2
), pp.
509
520
.10.1115/1.3438358
3.
Myers
,
C. J.
,
1984
, “
Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings
,”
J. Appl. Mech
,.,
51
(
2
), pp.
244
250
.10.1115/1.3167607
4.
Hollis
,
P.
, and
Taylor
,
D. L.
,
1986
, “
Hopf Bifurcation to Limit Cycles in Fluid Film Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
184
189
.10.1115/1.3261158
5.
Muszynska
,
A.
,
1986
, “
Whirl and Whip-Rotor/Bearing Stability Problems
,”
J. Sound Vib.
,
110
(
3
), pp.
443
462
.10.1016/S0022-460X(86)80146-8
6.
Muszynska
,
A.
,
1988
, “
Stability of Whirl and Whip in Rotor/Bearing Systems
,”
J. Sound Vib.
,
127
(
1
), pp.
49
64
.10.1016/0022-460X(88)90349-5
7.
Crooijmans
,
M. T. M.
,
Brouwers
,
H. J. H.
,
van Campen
,
D. H.
, and
de Kraker
,
A.
,
1990
, “
Limit Cycle Predictions of a Nonlinear Journal-Bearing System
,”
J. Eng. Ind.
,
112
(
2
), pp.
168
185
.10.1115/1.2899561
8.
Wang
,
J.
,
2005
, “On the Stability of Rotor Bearing Systems Based on Hopf Bifurcation Theory,” Ph.D. thesis,
Louisiana State University
, Baton Rouge, LA.
9.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
594
603
.10.1115/1.2197842
10.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Application of Hopf Bifurcation Theory to Rotor-Bearing Systems With Consideration of Turbulent Effects
,”
Tribol. Int.
,
39
(
7
), pp.
701
714
.10.1016/j.triboint.2005.07.031
11.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Prediction of Stability Envelope of Rotor-Bearing Systems
,”
ASME J. Vib. Acoust.
,
128
(
2
), pp.
197
202
.10.1115/1.2159035
12.
Wang
,
J.
, and
Khonsari
,
M.
,
2006
, “
Influence of Inlet Oil Temperature on the Instability Threshold of Rotor-Bearing Systems
,”
ASME J. Tribol.
,
128
(
2
), pp.
319
326
.10.1115/1.2162920
13.
Miraskari
,
M.
,
Hemmati
,
F.
, and
Gadala
,
M.
,
2018
, “
Nonlinear Dynamics of Flexible Rotors Supported on Journal Bearings—Part I: Analytical Bearing Model
,”
ASME J. Tribol.
,
140
(
2
), p.
021704
.10.1115/1.4037730
14.
Miraskari
,
M.
,
Hemmati
,
F.
, and
Gadala
,
M.
,
2018
, “
Nonlinear Dynamics of Flexible Rotors Supported on Journal Bearings—Part II: Numerical Bearing Model
,”
ASME J. Tribol.
,
140
(
2
), p.
021705
.10.1115/1.4037731
15.
Zhou
,
R.
,
Gu
,
Y.
,
Cui
,
J.
,
Ren
,
G.
, and
Yu
,
S.
,
2021
, “
Nonlinear Dynamic Analysis of Supercritical and Subcritical Hopf Bifurcations in Gas Foil Bearing-Rotor Systems
,”
Nonlinear Dyn
,
103
(
3
), pp.
2241
2256
.10.1007/s11071-021-06234-4
16.
Chasalevris
,
A.
,
2020
, “
Stability and Hopf Bifurcations in Rotor-Bearing-Foundation Systems of Turbines and Generators
,”
Tribol. Int
,
145
, p.
106154
.10.1016/j.triboint.2019.106154
17.
Boyaci
,
A.
,
Hetzler
,
H.
,
Seemann
,
W.
,
Proppe
,
C.
, and
Wauer
,
J.
,
2009
, “
Analytical Bifurcation Analysis of a Rotor Supported by Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
(
4
), pp.
497
507
.10.1007/s11071-008-9403-x
18.
Boyaci
,
A.
,
Seemann
,
W.
, and
Proppe
,
C.
,
2010
, “
Stability and Bifurcations of Rotors in Fluid Film Bearings
,”
PAMM
,
10
(
1
), pp.
235
236
.10.1002/pamm.201010110
19.
Boyaci
,
A.
,
Lu
,
D.
, and
Schweizer
,
B.
,
2015
, “
Stability and Bifurcation Phenomena of Laval/Jeffcott Rotors in Semi-Floating Ring Bearings
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1535
1561
.10.1007/s11071-014-1759-5
20.
Boyaci
,
A.
,
2016
, “
Numerical Continuation Applied to Nonlinear Rotor Dynamics
,”
Procedia IUTAM
,
19
, pp.
255
265
.10.1016/j.piutam.2016.03.032
21.
Rubel
,
J.
,
2009
, “
Vibrations in Nonlinear Rotordynamics
,” Ph.D. thesis,
Ruprecht-Karls-Universitsät, Heidelberg, Germany
.
22.
Amamou
,
A.
,
Chouchane
,
M.
, and
Naimi
,
S.
,
2009
, “
Nonlinear Analysis of the Stability of Hydrodynamic Bearings
,”
Diagnostyka
,
52
(
4
), pp.
3
10
.10.1016/j.mechmachtheory.2013.10.002
23.
Chouchane
,
M.
, and
Amamou
,
A.
,
2011
, “
Chouchane, Bifurcation of Limit Cycles in Fluid Film Bearings
,”
Int. J. Non-Linear Mech.
,
46
(
9
), pp.
1258
1264
.10.1016/j.ijnonlinmec.2011.06.005
24.
Sghir
,
R.
, and
Chouchane
,
M.
,
2015
, “
Prediction of the Nonlinear Hysteresis Loop for Fluid-Film Bearings by Numerical Continuation
,”
Proc Inst. Mech. Eng. Part C J Mech. Eng. Sci.
,
229
(
4
), pp.
651
662
.10.1177/0954406214538618
25.
Sghir
,
R.
, and
Chouchane
,
M.
,
2016
, “
Nonlinear Stability Analysis of a Flexible Rotor-Bearing System by Numerical Continuation
,”
J. Vib. Control
,
22
(
13
), pp.
3079
3089
.10.1177/1077546314558133
26.
van Breemen
,
F. C.
,
2016
, “
Stability Analysis of a Laval Rotor on Hydrodynamic Bearings By Numerical Continuation: Investigating the Influence of Rotor Flexibility, Rotor Damping and External Oil Pressure on the Rotordynamic Behaviour
,” M.Sc. thesis, TU Delft, Delft, The Netherlands.
27.
Becker
,
K.
,
2019
, “
Dynamisches Verhalten hydrodynamisch gelagerter Rotoren unter ber¨ucksichtigung ver¨anderlicher Lagergeometrien
,” Ph.D. thesis,
Karlsruhe Institute of Technology
, Germany.
28.
Leister
,
T.
,
2021
, “
Dynamics of Rotors on Refrigerant Lubricated Gas Foil Bearings
,” Ph.D. thesis,
Karlsruhe Institute of Technology
, Germany.
29.
Govaerts
,
W.
,
Kuznetsov
,
Y. A.
,
Ghaziani
,
R. K. H.
, and
Meijer
,
G. E.
,
2008
,
MATCONT and CL MATCONT: Continuation Toolboxes in MATLAB
,
Ghent University and Utrecht University
, Ghent, The Netherlands.
30.
Doedel
,
E.
, and
Oldeman
,
B.
, “Auto07p: Continuation and Bifurcation Software for Ordinary Differential Equations,” Concordia University Montreal, Montreal, QC, Canada.
31.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.10.1115/1.3251669
32.
Jakobsson
,
B.
, and
Floberg
,
L.
, “The Finite Journal Bearing, Considering Vaporization (Das Gleitlager von endlicher Breite mit Verdampfung),” Goteborg, Sweden.
33.
Stieber
,
W.
,
1933
, “
Das Schwimmlager: Hydrodynamische Theorie Des Gleitlagers
,”
Z. Angew. Math. Mech.
,
13
(
5
), p.
391
.10.1002/zamm.19330130521
34.
Gumbel
,
L.
,
1914
, “Das Problem der Lagerreibung,” Mbl. Berlin. Bez.-Ver. dtsch. lng. iJ, 87-104 u.
109
120
.
35.
Meijer
,
H.
,
Dercole
,
F.
, and
Oldeman
,
B.
,
2009
, “
Numerical Bifurcation Analysis
,”
Encyclopedia of Complexity and Systems Science
,
R. A.
Meyers
, ed.,
Springer
,
New York
, pp.
6329
6352
.
36.
Allgower
,
E. L.
, and
Georg
,
K.
,
2003
,
Introduction to Numerical Continuation Methods
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
37.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2004
,
Applied Nonlinear Dynamics
(Wiley Series in Nonlinear Science),
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany
.
38.
Dimitriadis
,
G. A.
,
2017
,
Introduction to Nonlinear Aeroelasticity
(Aerospace Series), 1st ed., Wiley, Hoboken, NJ.
39.
Kuznetsov
,
Y. A.
,
1998
,
Elements of Applied Bifurcation Theory
(Applied Mathematical Sciences), 2nd ed.,
Springer
,
New York
.
40.
Lust
,
K.
,
2001
, “
Improved Numerical Floquet Multipliers
,”
Int. J. Bifurcation Chaos
,
11
(
09
), pp.
2389
2410
.10.1142/S0218127401003486
41.
Zheng
,
Z.
, and
Roose
,
D.
,
1998
, “
The Behaviour of the Floquet Multipliers of Periodic Solutions Near a Homoclinic Orbit
,” KU Leuven, Belgium, Report No. Report No. TW 287.
42.
Fairgrieve
,
T. F.
, and
Jepson
,
A. D.
,
1991
, “
O. K. Floquet Multipliers
,”
SIAM J. Numer. Anal.
,
28
(
5
), pp.
1446
1462
.10.1137/0728075
43.
Kuznetsov
,
Y. A.
,
Govaerts
,
W.
,
Doedel
,
E.
, and
Dhooge
,
A.
,
2005
, “
Numerical Periodic Normalization for Codim 1 Bifurcations of Limit Cycles
,”
SIAM J. Numer. Anal.
,
43
(
4
), pp.
1407
1435
.10.1137/040611306
You do not currently have access to this content.