Abstract

The corotational frame method is widely used in the simulation of flexible multibody dynamics. Its core idea is to separate the rigid motion from the flexible deformation so that it can make fully exploit a large number of excellent local finite elements. The essence of the conventional corotational frame method is the projection relationship between the element frame and the global frame. This paper explores another coordinate projection method for two-dimensional (2D) corotational beam element. The projection relationship between the element frame and the local frame in the framework of Lie algebra se(2) has been proposed. Based on the description of SE(2), the formulation of corotational beam element and integration algorithm is presented. The local frame description greatly reduces the nonlinearity of the formula by eliminating the effect of the rigid body motion on the projection matrix, internal force and inertial force. Several examples of large deformation and large rotation are performed, and it is found that the step-size convergence and iterative efficiency of SE(2) description are improved compared with R3 description. Moreover, some examples are used given to verify that the frame invariance brought by SE(2) is valuable for improving computing efficiency. The presented transformation method can easily extend to other 2D elements.

References

1.
Bakr
,
E. M.
, and
Shabana
,
A. A.
,
1986
, “
Geometrically Nonlinear Analysis of Multibody Systems
,”
Comput. Struct. (UK)
,
23
(
6
), pp.
739
751
.10.1016/0045-7949(86)90242-7
2.
Hu
,
H.
,
Tian
,
Q.
, and
Liu
,
C.
,
2017
, “
Soft Machines: Challenges to Computational Dynamics
,”
Procedia IUTAM
,
20
, pp.
10
17
.10.1016/j.piutam.2017.03.003
3.
Felippa
,
C. A.
, and
Haugen
,
B.
,
2005
, “
A Unified Formulation of Small-Strain Corotational Finite Elements: I. Theory
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
21–24
), pp.
2285
2335
.10.1016/j.cma.2004.07.035
4.
Pajot
,
J. M.
, and
Maute
,
K.
,
2006
, “
Analytical Sensitivity Analysis of Geometrically Nonlinear Structures Based on the co-Rotational Finite Element Method
,”
Finite Elem. Anal. Des.
,
42
(
10
), pp.
900
913
.10.1016/j.finel.2006.01.007
5.
Rankin
,
C. C.
, and
Brogan
,
F. A.
,
1986
, “
An Element Independent Corotational Procedure for the Treatment of Large Rotations
,”
ASME Trans. J. Pressure Vessel Technol.
,
108
(
2
), pp.
165
174
.10.1115/1.3264765
6.
Kamel
,
H.
,
Chung
,
C. D.
,
Kone
,
G. J.
,
Gupta
,
A.
,
Morris
,
N. A.
,
Fink
,
M. E.
, and
Navi
,
B. B.
,
2018
, “
A Corotational Formulation Based on Hamilton's Principle for Geometrically Nonlinear Thin and Thick Planar Beams and Frames
,”
Math. Probl. Eng.
,
75
(
4
), pp.
515
517
.10.1155/2018/2670462
7.
Le
,
T.-N.
,
Battini
,
J.-M.
, and
Hjiaj
,
M.
,
2014
, “
A Consistent 3D Corotational Beam Element for Nonlinear Dynamic Analysis of Flexible Structures
,”
Comput. Methods Appl. Mech. Eng.
,
269
, pp.
538
565
.10.1016/j.cma.2013.11.007
8.
Wang
,
G.
,
Qi
,
Z. H.
, and
Xu
,
J. S.
,
2020
, “
A High-Precision co-Rotational Formulation of 3D Beam Elements for Dynamic Analysis of Flexible Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
,
360
, p.
112701
.10.1016/j.cma.2019.112701
9.
Deng
,
L.
, and
Zhang
,
Y.
,
2021
, “
Nonlinear Dynamic Analysis of Arresting Gears Using 2D Non-Material Variable-Domain Corotational Elements
,”
Mech. Mach. Theory
,
163
, p.
104377
.10.1016/j.mechmachtheory.2021.104377
10.
Peng
,
L.
,
Feng
,
Z.-Q.
,
Joli
,
P.
,
Renaud
,
C.
, and
Xu
,
W.-Y.
,
2019
, “
Bi-Potential and co-Rotational Formulations Applied for Real Time Simulation Involving Friction and Large Deformation
,”
Comput. Mech.
,
64
(
3
), pp.
611
623
.10.1007/s00466-019-01672-9
11.
Le
,
T. N.
,
Battini
,
J. M.
, and
Hjiaj
,
M.
,
2011
, “
Efficient Formulation for Dynamics of Corotational 2D Beams
,”
Comput. Mech.
,
48
(
2
), pp.
153
161
.10.1007/s00466-011-0585-6
12.
Deng
,
L.
,
Zhang
,
Y.
, and
Chen
,
L.-Q.
,
2022
, “
An Arbitrary Lagrangian–Eulerian Formulation of Two-Dimensional Viscoelastic Beams Based on the Consistent Corotational Method
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
7
), p. 071001.10.1115/1.405399
13.
Gaonkar
,
A. K.
, and
Kulkarni
,
S. S.
,
2017
, “
Model Order Reduction for Dynamic Simulation of Slender Beams Undergoing Large Rotations
,”
Comput. Mech.
,
59
(
5
), pp.
809
829
.10.1007/s00466-017-1374-7
14.
Shen
,
Z.
,
Chouvion
,
B.
,
Thouverez
,
F.
,
Beley
,
A.
, and
Beley
,
J.-D.
,
2019
, “
Nonlinear Vibration of Rotating Corotational Two-Dimensional Beams With Large Displacement
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p. 051008.10.1115/1.4041024
15.
Yang
,
Y.
,
Li
,
M.
, and
Xu
,
F.
,
2022
, “
A 3D Hard-Magnetic Rod Model Based on co-Rotational Formulations
,”
Acta Mech. Sin.
,
38
, p. 222085.10.1007/s10409-022-22085-x
16.
Andria
,
N.
,
Zuhal
,
L. R.
,
Gunawan
,
L.
, and
Muhammad
,
H.
,
2020
, “
A 2D Corotational Formulation for Dynamic Analysis of Flexible Beams Undergoing Extremely Large Deformation
,”
AIP Conf. Proc.
,
2226
, p.
040002
.10.1063/5.0005361
17.
Huang
,
C. C.
,
Fujii
,
F.
, and
Hsiao
,
K. M.
,
2018
, “
An Explicit Algorithm for Geometrically Nonlinear Transient Analysis of Spatial Beams Using a Corotational Total Lagrangian Finite Element Formulation
,”
Comput. Struct.
,
200
, pp.
68
85
.10.1016/j.compstruc.2018.01.011
18.
Le
,
T.-N.
,
Battini
,
J.-M.
, and
Hjiaj
,
M.
,
2014
, “
Corotational Formulation for Nonlinear Dynamics of Beams With Arbitrary Thin-Walled Open Cross-Sections
,”
Comput. Struct.
,
134
, pp.
112
127
.10.1016/j.compstruc.2013.11.005
19.
Marinkovic
,
D.
, and
Zehn
,
M.
,
2018
, “
Corotational Finite Element Formulation for Virtual-Reality Based Surgery Simulators
,”
Phys. Mesomech.
,
21
(
1
), pp.
15
23
.10.1134/S1029959918010034
20.
Bui
,
H. P.
,
Tomar
,
S.
,
Courtecuisse
,
H.
,
Cotin
,
S.
, and
Bordas
,
S. P. A.
,
2018
, “
Real-Time Error Control for Surgical Simulation
,”
IEEE Trans. Biomed. Eng.
,
65
(
3
), pp.
596
607
.10.1109/TBME.2017.2695587
21.
Georgii
,
J.
, and
Westermann
,
R.
,
2006
, “
A Multigrid Framework for Real-Time Simulation of Deformable Bodies
,”
Comput. Graph.
,
30
(
3
), pp.
408
415
.10.1016/j.cag.2006.02.016
22.
Marinkovic
,
D.
,
Zehn
,
M.
, and
Marinkovic
,
Z.
,
2012
, “
Finite Element Formulations for Effective Computations of Geometrically Nonlinear Deformations
,”
Adv. Eng. Software
,
50
, pp.
3
11
.10.1016/j.advengsoft.2012.04.005
23.
Bui
,
H. P.
,
Tomar
,
S.
, and
Bordas
,
S. P. A.
,
2019
, “
Corotational Cut Finite Element Method for Real-Time Surgical Simulation: Application to Needle Insertion Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
183
211
.10.1016/j.cma.2018.10.023
24.
Koshy
,
C. S.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2013
, “
Study of the Effect of Contact Force Model on the Dynamic Response of Mechanical Systems With Dry Clearance Joints: Computational and Experimental Approaches
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
325
338
.10.1007/s11071-013-0787-x
25.
Arvidsson
,
T.
,
Andersson
,
A.
, and
Karoumi
,
R.
,
2019
, “
Train Running Safety on Non-Ballasted Bridges
,”
Int. J. Rail Transp.
,
7
(
1
), pp.
1
22
.10.1080/23248378.2018.1503975
26.
Kerkkänen
,
K. S.
,
García-Vallejo
,
D.
, and
Mikkola
,
A. M.
,
2006
, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
,
43
(
3
), pp.
239
256
.10.1007/s11071-006-7749-5
27.
Liu
,
W.
,
Yang
,
Z.
,
Du
,
S.
,
Li
,
H.
, and
Zhang
,
Q.
,
2022
, “
Theoretical, Numerical and Experimental Study on the in-Plane Elastic Behavior of a 2D Chiral Cellular Structure
,”
Compos. Struct.
,
296
, p.
115889
.10.1016/j.compstruct.2022.115889
28.
Argyris
,
J.
,
1982
, “
An Excursion Into Large Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
85
155
.10.1016/0045-7825(82)90069-X
29.
Sonneville
,
V.
,
2015
, “
A geometric local frame approach for flexible multibody systems
,” Ph.D. thesis,
Université de Liège
, Belgium.
30.
Bruls
,
O.
, and
Cardona
,
A.
,
2010
, “
On the Use of Lie Group Time Integrators in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
) p. 031002.10.1115/1.4001370
31.
Wieloch
,
V.
, and
Arnold
,
M.
,
2021
, “
BDF Integrators for Constrained Mechanical Systems on Lie Groups
,”
J. Comput. Appl. Math.
,
387
, p.
112517
.10.1016/j.cam.2019.112517
32.
Chen
,
J.
,
Huang
,
Z.
, and
Tian
,
Q.
,
2022
, “
A Multisymplectic Lie Algebra Variational Integrator for Flexible Multibody Dynamics on the Special Euclidean Group SE(3
),”
Mech. Mach. Theory
,
174
, p.
104918
.10.1016/j.mechmachtheory.2022.104918
33.
Bruls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-Alpha Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
34.
Sonneville
,
V.
, and
Brüls
,
O.
,
2014
, “
A Formulation on the Special Euclidean Group for Dynamic Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p. 041002.10.1115/1.4026569
35.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.10.1007/s11044-014-9439-2
36.
Sonneville
,
V.
,
Cardona
,
A.
, and
Bruls
,
O.
,
2014
, “
Geometrically Exact Beam Finite Element Formulated on the Special Euclidean Group SE(3)
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
451
474
.10.1016/j.cma.2013.10.008
37.
BrüLs
,
O.
,
Arnold
,
M.
, and
Cardona
,
A.
,
2011
, “
Two Lie Group Formulations for Dynamic Multibody Systems With Large Rotations
,”
Computers and Information in Engineering Conference
, Washington, DC, Aug. 28–31, pp.
85
94
.10.1115/DET C2011-48132
38.
Zhong
,
P.
,
Huang
,
G.
, and
Yang
,
G.
,
2016
, “
Frame-Invariance in Finite Element Formulations of Geometrically Exact Rods
,”
Appl. Math. Mech.
,
37
(
12
), pp.
1669
1688
.10.1007/s10483-016-2147-8
39.
Cursi
,
F.
,
Bai
,
W. B.
,
Li
,
W. Y.
,
Yeatman
,
E. M.
, and
Kormushev
,
P.
,
2022
, “
Augmented Neural Network for Full Robot Kinematic Modelling in SE(3)
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
7140
7147
.10.1109/LRA.2022.3180428
40.
Lippiello
,
V.
, and
Cacace
,
J.
,
2022
, “
Robust Visual Localization of a UAV Over a Pipe-Rack Based on the Lie Group SE(3)
,”
IEEE Rob. Autom. Lett.
,
7
(
1
), pp.
295
302
.10.1109/LRA.2021.3125039
41.
Schulman
,
J.
,
Duan
,
Y.
,
Ho
,
J.
,
Lee
,
A.
,
Awwal
,
I.
,
Bradlow
,
H.
,
Pan
,
J.
,
Patil
,
S.
,
Goldberg
,
K.
, and
Abbeel
,
P.
,
2014
, “
Motion Planning With Sequential Convex Optimization and Convex Collision Checking
,”
Int. J. Rob. Res.
,
33
(
9
), pp.
1251
1270
.10.1177/0278364914528132
42.
Rong
,
J.
,
Wu
,
Z.
,
Liu
,
C.
, and
Brüls
,
O.
,
2020
, “
Geometrically Exact Thin-Walled Beam Including Warping Formulated on the Special Euclidean Group SE(3)
,”
Comput. Methods Appl. Mech. Eng.
,
369
, p.
113062
.10.1016/j.cma.2020.113062
43.
Bosten
,
A.
,
Cosimo
,
A.
,
Linn
,
J.
, and
Brüls
,
O.
,
2022
, “
A Mortar Formulation for Frictionless Line-to-Line Beam Contact
,”
Multibody Syst. Dyn.
,
54
(
1
), pp.
31
52
.10.1007/s11044-021-09799-5
44.
Roccia
,
B. A.
,
Cosimo
,
A.
,
Preidikman
,
S.
, and
Brüls
,
O.
,
2021
, “
Numerical Models for the Static Analysis of Cable Structures Used in Airborne Wind Turbines
,”
Multibody Mechatron. Syst.
,
94
, pp.
140
147
.10.1007/978-3-030-60372-4
45.
Zhang
,
T.
,
Liu
,
C.
, and
Tang
,
H.
,
2021
, “
Geometrically Exact Shell With Drilling Rotations Formulated on the Special Euclidean Group SE(3)
,”
Int. J. Numer. Methods Eng.
,
122
(
18
), pp.
4886
4921
.10.1002/nme.6750
46.
Dai
,
J. S.
,
2021
,
Screw Algebra and Lie Groups Amd Lie Algebras
,
Springer
,
London
.
47.
Chirikjian
,
G. S.
,
2011
, “
Stochastic Models, Information Theory, and Lie Groups
,”
Analytic Methods and Modern Applications
, Vol.
2
,
Birkhäuser
Boston
, MA.
48.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.10.1007/s11044-007-9084-0
49.
Ding
,
J.
,
Wallin
,
M.
,
Wei
,
C.
,
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
Use of Independent Rotation Field in the Large Displacement Analysis of Beams
,”
Nonlinear Dyn.
,
76
(
3
), pp.
1829
1843
.10.1007/s11071-014-1252-1
50.
Karatarakis
,
A.
,
Karakitsios
,
P.
, and
Papadrakakis
,
M.
,
2014
, “
GPU Accelerated Computation of the Isogeometric Analysis Stiffness Matrix
,”
Comput. Methods Appl. Mech. Eng.
,
269
, pp.
334
355
.10.1016/j.cma.2013.11.008
51.
Hofreither
,
C.
,
2018
, “
A Black-Box Low-Rank Approximation Algorithm for Fast Matrix Assembly in Isogeometric Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
333
, pp.
311
330
.10.1016/j.cma.2018.01.014
You do not currently have access to this content.